

NanoLab, Inc. Nanostructured Optical Black Coatings

Presenter: David Carnahan

Contents

NANO LAB

- NanoLab overview
- Introduction to nanotube-based black coatings
- NanoLab optical black coatings
 - adVANTA Black
 - □ 2-step processing: catalyzation & CVD growth
 - Properties + applications
 - Singularity Black
 - Solution-based coating process
 - Properties + applications

Introduction to NanoLab

- □ NanoLab has recognized expertise in:
 - nanomaterials fabrication,
 - nanocomposite formulation, and
 - Nano-product & process development
- EXALL RUSINESS INNOVATION RESEARCH PROCRAM 2004 SBIR PHASE II QUALITY AWARD CULITY AWARD COMMENT NANO-LAB, INC

- Domestic manufacturer of carbon nanotubes and supplies a variety of carbon nanotube products to industrial and academic customers.
- Contract research and product development activities for governmental and industrial customers that require products with tailored material properties or unique functionality.
- □ *Coating services* for optical parts

NanoLab Capabilities

N	anon	nater	ial Sy	nthe/	sis

 Air-free chemical synthesis Hydrothermal synthesis Full wet chemical lab CVD reactors 	 In-house CNT production & functionalization Plasma & ozone etching Electrochemical deposition 	 Access to: E-beam lithography Full clean room Metrology & SEM Lab
Product Design Tools	Plastics, elastomer & epoxy composite tools	Inks & Paint Formulation Tools
 Eagle (circuit board design) Solidworks (3D drafting) LabVIEW (DAQ & process automation) 3D printing and prototyping 	 Lab-scale extrusion line Two and three roll milling Centrifugal mixing Resin transfer molding & ovens 	 Ultrasonic dispersion equipment Screen & inkjet printers, and drop-on-demand printing Spray booth, clean hoods

	Characterization								
•	Optical	 Thermo-physical 	 Mechanical 	 Electrical 					
	• FTIR	• TGA	Tensile	Resistance					
	 UV-VIS-NIR 	• DSC	 Impact 	 Impedance 					
	Raman	• DTA	Adhesion	Capacitance					
				Inductance					

Material systems: carbon nanotubes, nanoparticles & nanowires of oxides, metals, carbides Matrices: epoxies, silicones, rubbers, urethanes, polyimides, metals, carbides, oxides

Technology portfolio

- Nanoscale tweezers/grasping tools
- Radiation, gas sensors (Private)
- Wear sensors for bearings (Navy, NHBB)

Composites

- Toughened B₄C armor nanocomposites (Army)
- CNT-reinforced epoxy composites (Schlumberger)
- Elastomeric strain sensors (Adidas)
- Filtration media for virus removal (Lydall)

Coatings

- Catalytic nanoparticle coatings (DOE)
- Corrosion resistant coatings & primers (Navy)
- Low Z scintillator coatings (Private)
- Photonic lattices
- Optical black coatings (NASA)

100 nm

NIA

What makes a good black surface?

Minimize Reflection: Coating must match the refractive index of the \sim atmosphere above it.

п

Nanotube arrays are sparse, low volumetric density (~5vol%) structures.

Provide long total path length for absorption...A coating should be 2-3 wavelengths thick at the wavelengths we care about.

- **CNT** lengths $>> \lambda$ for optical & IR.
- Provide short path length between inelastic interactions.
 - Site density/spacing between CNT < λ
 - Low conductivity = high loss for CNT.

Flat Dielectric function

As a function of wavelength

Hua-Bao, Xiu Lin Ran, Timothy Fisher, "Optical properties of vertical arrays of multiwalled carbon nanotubes from FTDT simulations" 15 March 2010 / Vol. 18, No. 6 / OPTICS EXPRESS 6353

Structure makes a difference

NIAINIO

The optical properties of nanotube arrays to their growth parameters; determining the influence of:

diameter site density alignment length graphitization

в

Ref: Mizuno PNAS, 2009, 106, 15 Enhanced optical absorption cross-section characteristics of multi-wall carbon nanotubes, C. Ni, P.R. Bandaru, Carbon 47 (2009) 2898 - 2903

NanoLab Optical Black Products

- NanoLab offers highly black nanotube coatings that are:
 - Applicable to multiple substrates materials
 - Conformal to complex parts of any size
- - Materials are catalyzed by sputtering or wet catalysis, and Vertically Aligned NanoTube Arrays (VANTA) are grown directly by Chemical Vapor Deposition (CVD) ~700C

NĂĂŇ

Ο

- Gives best blackbody optical performance from UV to IR
- Can be transferred onto other substrates
- □ **Singularity[™]** Surface is a paint, directly coated with unaligned carbon nanotubes in a matrix.
 - Easily masked and applied as spray formulation
 - Outperforms SOA materials
 - Activated by 250-300°C processing
 - Frangible, but robust
 - Recoatable

adVANTA Processing

- **Standard catalysis** $Al_2O_3 + Fe$:
 - Sputtering or Evaporator
 - 10\$/m² at large volumes
 - □ Line of sight deposition

- Wet chemical approach
 - Spray or Spin Coating
 - \square ~\$1/m² at volume
 - Good for complex parts

NĬAĬN

Chemical vapor deposition: ~700C, Ar, H_2 , C_2H_4

Finished component

adVANTA microstructure.

NĂĂŇŎ

Wet catalyzed adVANTA on complex shapes

[N]A]N]O

adVANTA coatings have been successfully grown on every substrate attempted to date that support the growth temperature.

adVANTA UV-Vis Data

- Optimized coatings exhibit 0.1% THR in the optical range.
 - PE Lambda 19, with integrating sphere

0

в

NĬAĬN

THR Optical performance of adVANTA

NĂĂŇ

O

■ UV-Vis reflectance data for liquid-phase adVANTA catalyst deposited by metering bar. Reflectance of ~1% is seen in the visible range.

Longer wave IR Measurements

- Made at Low Background Infrared (LBIR) facility, NIST, 2017, A. Carter.
- Measurements made with a Bomem DA-8 using a reflectance rig, sample illumination with f/4 cone.

П

п

п

П

- Reflectance measurements were made in specular and non-specular configurations.
- No sphere based total integrated scatter (TIS) measurements were made, as the reflectance for many of the samples was so low that signal to noise was relatively poor.
- For specular measurements, angle of incidence (AOI) $\sim 15^{\circ}$.
 - For non-specular measurements (used to characterize the diffuse component of reflectance), the sample was tilted X degrees from the specular position either backward, forward, to the left, or to the right.

adVANTA Specular Reflectance

□ 3-22 microns

Ó

NĂĂŇ

adVANTA Specular Reflectance 25-275um

 \mathbf{O}

в

NIAINI

adVANTA Specular Reflectance- transfer

[N]A]N]

 $\mathbf{0}$

adVANTA transferred array - Specular Reflectance

NIAINIO

A | B

Singularity Black paint

Why do we need this?

- Temperatures of the CVD process are not suited to aluminum, plastics or composites
- We need an approach that is not limited by furnace sizing.

Our challenges were:

- How to retain the low density network?
- How to keep any thermal processing below ~300C?
- Can these be sufficiently black, and well adhered?
- Could these coatings be repairable?

Super Black!

https://youtu.be/9 KyBalghFg

Singularity Black thermal processing

NIAINIO

AĬΒ

Singularity Black sample parts

Laser sintered titanium baffle

[N]A]NÌO

Singularity Black with Adhesive Primer

- Pristine Singularity Black coatings are sensitive to physical rubbing or scratching
 - Common problem in CNT-based black coatings
- Adhesive primer improves abrasion resistance of Singularity Black coating
 - Able to withstand incidental rubbing or contact during handling

https://www.youtube.com/watch?v=qFCGEtu_1mA

NĂĂŇ

Also now hydrophobic!

UV-Vis spectra of reflectance of Singularity Black coating compared to Acktar Metal Velvet.

UV-Vis-NIR Reflectance

NĂĂŇ

0

DRIFTS

We needed a rapid method to grade the coatings in the IR. Our FTIR system, equipped with a diffuse reflectance accessory (Pike EasiDiff) gives us a way to compare the relative reflectance of our nanotube arrays.

We measure:

П

- 1. Reflected energy spectrum from 2.5-25 microns
- 2. Beam Energy (BE) which is a rough average across the range.
 - □ A mirror gives a BE ~6000
 - \Box Krylon flat black on mica, BE = 324
 - \Box Our best arrays, BE= 2

MWIR-LWIR Diffuse Reflectance

NĂĂŇ

O

Singularity DRIFTS data

NĬO

NA

NANO LAB

- □ Thermal Cycling
 - Singularity samples were thermal cycled 3X from-60°C to 85 °C at 10-20 °C/min, 30 min soaks, N2. No changes were observed.

Outgassing

- 24 hr at 100°C, with a Thermal Quartz Crystal Microbalance (TQCM). The rate was 3.95 × 10⁻¹⁵ g/cm²-sec, similar to metals.
 Environmental Advantation of the AZ TEMP 2000A
- Emissivity & Absorbtivity e=0.99, a=0.86 by AZ TEMP 2000A

Vibe

GEVS II and Delta IV tests- passed

Cleanliness

■ IEST-STD-CC1246 Particle Level ,Clemex particle sizer

Summary of Singularity Black

Singularity Black has low diffuse/specular reflectance in the broadband

NIAINIO

- SWIR: 1.25 1.75%
- MWIR: 1.0 2.0%
- LWIR: 2.0 4.5%
- FIR (<50 µm): < 10%
- □ Thermally stable up to 300°C
- Mechanically stable to rocket-type vibrations, adhesive primer improves abrasion resistance to withstand incidental contact
- Processing conditions are amenable to aluminum and copper parts
- Applicable via spray-coating, dip-coating, and brushcoating

Questions?

Acktar DHR spectra

Compilation of directional hemispherical reflectance spectra of Acktar Black products

NĂĂŇ

0

DRIFTS

Top Performers- DRIFTS

 $\mathbf{\hat{o}}$

[N]A]N]

