



# Requirements Development for Balloon Borne Sub-Millimeter Missions

In Support of NASA Phase I SBIR: Low Cost CMB Telescope

**B. Catanzaro, October 1, 2013** bcatanza@alumni.caltech.edu

## Motivation

- Far Infrared Observations hold the key to the Formation of Stars, Galaxies, the Universe Itself
- Observations include
  - Temperature maps of CMB
  - Spectroscopy of the Chemistry of Stellar Formation
  - Polarization Anisoptropy
- Balloon Borne Platforms Advantages
  - Enable Groundbreaking Science
  - Prove Risky Technologies
    - Detectors Must be Flown on Balloon prior to Space
  - Rapid Deployment (2 yrs Concept / Flight)
  - Low Cost (Approx. \$10 M)
  - Train Students

## **Extra-Galactic Temperature Maps**



#### All Sky Temperature Map

## **Early Star Formation**

#### Cool Dust Clouds, Nearly Impossible to See with Visible Observations



# Confirmation of Star Formation Theories

- Role of Magnetic Fields in Star Formation Theorized / Simulated
- Observations of Polarization in Far IR / Sub-MM can Confirm Theories





#### Where is this Science Being Discovered?







Air



# **Developing Requirements**



# How Can We Pull All This Together?

- Mind Mapping as a Process
  - Brainstorming
  - Multi-Dimensional Outline
  - Cross Linking Ideas

![](_page_7_Figure_5.jpeg)

### **Initial Mind Map**

![](_page_8_Figure_1.jpeg)

# Add Realism

- BLAST Launch
- BLAST Release

# Launch

![](_page_10_Picture_1.jpeg)

# **Telescope Release**

![](_page_11_Picture_1.jpeg)

# **Two Missions Under Study**

- BLASTPol
  - Diffraction Limited
  - Follow-On from BLAST Missions
  - Small Object Observations
  - Imaging of Extended Sources
- MuSE
  - Cosmic Microwave Background (CMB) Imaging
  - Multimoded Imaging of Sky (5X Airy Diam.)
  - High Sensitivity
  - Extended Source Imaging

# **BLAST** Heritage

![](_page_13_Picture_1.jpeg)

![](_page_13_Picture_2.jpeg)

#### **Balloon vs. Herschel Space Observatory**

|                         | BLASTPol / MuSE  | Herschel        |
|-------------------------|------------------|-----------------|
| Cost                    | \$10M            | \$1,400M        |
| Observation<br>Duration | 2 wks            | 4 yrs           |
| Approval to<br>Launch   | 2 yrs            | 10 yrs          |
| Wavelengths             | 200 μm to 7500μm | 80 μm to 670 μm |
| Telescope<br>Diameter   | 2.5 m            | 3.5 m           |
| Telescope<br>Mass       | 100 kg           | 300 kg          |
| Reusable                | Yes              | No              |

NASA Mirror Technology Days - 2013

![](_page_14_Picture_3.jpeg)

![](_page_14_Picture_4.jpeg)

15

# **MuSE Reference Design**

- Highly Off-axis
- Steeply Curved Conics

![](_page_15_Figure_3.jpeg)

# **Intermediate Mind Map**

![](_page_16_Figure_1.jpeg)

## **Final Mind Map**

![](_page_17_Figure_1.jpeg)

# **Summary of Final Requirements**

| Req.          | Value                           |                |  |
|---------------|---------------------------------|----------------|--|
| Release Loads | 5 – 10 G                        |                |  |
| Landing Loads | 3 G (any orientation)           |                |  |
|               | Ground                          | Observe        |  |
| Temperature   | -20 C to 30 C                   | -50 C to -10 C |  |
| Humidity      | Ambient RH                      | 0% RH          |  |
|               | Launch to Observe $= 1 - 2$ hrs |                |  |
| Mass          | < 100 kg                        |                |  |

Requirements Document = 18 pp