ATLAST 9.2 m Presentation to Tech Days

Lee Feinberg, GSFC

with a large team of collaborators from JPL, SAO, MSFC, StScI November 2014

Background

- In 2009, 3 Advanced Technology Large Aperture Space Telescope (ATLAST) architectures were developed (8, 9.2 and 16 meters) that all assumed a new class of launch vehicles with more mass and volume
 - This put us in the position of possibly not having a proven launch vehicle by 2020
- Last year, the ATLAST team developed a circular deployment geometry that fit a 36-segment 9.2 m telescope within a Delta IV Heavy
- The team has also assessed a 11.9 m aperture that required a different way to unfold the secondary mirror support structure
- This past year, the team has been focused on the ATLAST 9.2 m "reference" architecture that can make use of an existing Delta IV Heavy
 - Assessing in detail the mechanical/optical stability, followed by affirming that mass and volume closes
 - Integrated modeling being used to assess performance, status reported here
- Prior to modeling, team performed simple stability scaling calculations which show sufficient feasibility to proceed with detailed analysis
 - Presented at SPIE 2014

ATLAST 9.2 m JWST-like Deployment

2009 (Early GSFC ATLAST Studies) Assumed Larger EELV JWST Geometry Wings

2013 Circular Geometry Delta IVH (Feinberg et al, SPIE, 2014)

Use or disclosure of data contained on this page is subject to the restriction(s) on the title page of this document.

Notional 9.2 m Architecture Deployed Configuration

36 JWST Size Segments

Glass or SiC

Active or Rigid

Mirror to mirror metrology possible

Deployed Baffle

L2 orbit for stability and serviceability

Sunshield: 3-4 layer, constant angle to sun, Approximately 100K, stable sink Sunshield deployed from below using 4 booms Actively controlled SM Metrology to SI

Thermal Stability:

Primary Mirror only views deep space Heater cavity around backplane controls boundary condition to mK Segment level thermal control >+/-45 degree FOR

Dynamically Isolated from SC Non-contact isolation between spacecraft and telescope Signal and power fully isolated

Multi-dof Gimbal Maintains Sunshield at constant temperature Maintains constant CG minimizing momentum unloading

Use or disclosure of data contained on this page is subject to the restriction(s) on the title page of this document.

9.2m Deployment

Telescope Design Parameters

Telescope Parameter	Consensus Requirement
Primary Mirror Aperture	≥ 8 meters
Primary Mirror Temperature	~20 C, pending detailed thermal design
UV Coverage	100 nm (90 nm goal) – 300 nm
Vis/NIR Coverage	300 nm – 2500 nm
Mid-IR Coverage	Under evaluation to ~ 8000 nm
Vis/NIR Image Quality	Diffraction-limited performance at 500 nm
Stray Light	Zodi-limited in 400 nm – 2000 nm wavelengths
Wavefront Error Stability for	1 x 10 ⁻¹⁰ system contrast
Exoplanet Imaging Using an	< 10 pm rms residual system WFE for < 10 min
Internal Coronagraph	bandpass between λ/D and $10\lambda/D$

Mirror Segment Stability Assessed

IS M

- Realizable ULE mirrors based on existing mirrors and real radial CTE data, built by Exelis
- >1.15m flt to flt
- Substrate approximately half areal density of JWST segment
- Mounts not included
- Mirror mapped temperatures
- 1mK control from rear-side radiative heater plate
 - Considered conservative level of control
 - Commercial sensors <100uK available
- Steady state hot to cold
 - Improvements gained by taking advantage of transient under study
- Front surface changes over worse case slews for 100K sunshield confirmed to be small (approx. 50uW)

NOTE: See other talks on Zerodur and SiC stability modeling

Mirror Segment Stability Results

Thermal Result

RMS: 3.80 pm PV: 13.9 pm

RMS: 0.514 pm PV: 1.82 pm

	.98mK	control	1.27mK control	
CTE Distribution	RMS (pm)	PV (pm)	RMS (pm)	PV (pm)
Mirror 1	3.8	13.9	4.94	18.1
Mirror 2	0.514	1.82	0.67	2.38

Goal of <5 picometers demonstrated without taking advantage of time variation Dominated by power resulting from front to back gradient

ATLAST Integrated Modeling: Dynamics

Scaling performed based on JWST and using the PSD of a non-contact isolation system

- Results suggested <5 picometers is feasible but needs detailed study
 Integrated FEM/optical/dynamics model has been developed
 First results of LOS and WFE are in review, so far looks consistent with scaling that was done
 Employing non-contact isolator deemed to be TRL 5/6, reaction wheel isolation
- Employing non-contact isolator deemed to be TRL 5/6, reaction wheel isolation

Mass vs. Launch Capability

		6.5 m	9.2 m	11 m	16 m
	Mirror Mass (kg)*	1600	3200	4888	12444
	Total Observatory Mass (kg)	6600	8200	9888	17444
	50% Lower Areal Density Mirrors (kg)	800	1600	2444	6222
	Observatory Mass w/Lower Areal Density	5800	6600	7444	11222
	Mirrors (kg)			Approximate Launch Mass to C3 -0.5 (km²/sec²)	
	Approx. # of segments	18	36	Mass to orbi	it in thousands of kg
*backplane plus mirrors only				6.1 6.62	9.795
Scaled from JWST, more detailed effort planned			rt planned –	3.6	
			F	aicon 9 v1.1 Atlas V (511) Arian	e Deita IV H Falcon Heavy

Use or disclosure of data contained on this page is subject to the restriction(s) on the title page of this document.

25

SLS

Bigger Telescopes Assessed

11.9 m Segmented

20 m Assembled

•An 11.9 meter using the circular geometry was just able to fit

•Required changing the SM deployment approach

•If SLS Block 2 available, JWST SM deployment feasible and even larger aperture feasible, can also consider larger segments

Launch in piecesLeverage architecture from 9.2m studies

Driving Capabilities

Driving Capability	Need	Comparison to Current or Planned Space Missions
Sensitivity Resolution	10+ m aperture	300x HST, 6x JWST 4x HST, 6x JWST
Starlight Suppression (Contrast)	10 ⁻¹⁰	10 – 100x WFIRST-AFTA
Wavefront Error Stability (WFE) (Using Internal Coronagraph)	10 pm over 10 min (TBR)	1000x JWST
Coronagraphic Efficiency	Hundreds of potentially habitable stars surveyed in 5 years	Internal coronagraph surveys 10-100x more stars than occulters

Enabling Technology Investments

Technology already exists to build a large segmented UV-Visible-NIR general purpose observatory leveraging JWST and follow-on work Key challenges to support high contrast imaging include:

- Starlight Suppression System (Most Critical)
 - Two leading candidates are ACAD/Hybrid and VNC type internal coronagraphs
 - Need broad enough bandpass, sufficient IWA, sufficient contrast to do surveys
 - Need to iterate what is possible with science studies
 - Associated components (deformable mirrors, etc.)
 - Potential to relax observatory requirements with a clever approach here
 - Avoiding rolling the observatory, coating uniformity requirements
 - Starshade under consideration for spectroscopy or for new survey strategies
 - Stable, Lightweight Mirror Segments and Systems
 - Lightweight ULE mirror excellent candidate
 - SiC an option depending on stability performance
 - Mirror Coatings, considered enhancing
 - Key need is thermal stability demos
 - Laser metrology could play a role (picometer level)
- Vibration Isolation and Control
 - A non-contact isolation candidate is deemed TRL-5/6
 - Modelling underway to assess this
 - Combine with reaction wheel isolation, damping
- Detector Systems
 - Photon counting, considered enhancing

MMSD Lightweight ULE Segment Substrate

AHM SiCbased Segment Substrate

Summary

- ATLAST 9.2 m architecture feasibility assessment continues to progress
 - "Yardstick" architecture
- Scalable approach that can be made bigger, colder
 - Heavily leverages JWST design, experience
 - Alternative segment size and segmentation are possible
- ATLAST 9.2 m Stability Results are progressing
 - Segment stability looks promising
 - Expect dynamics modeling results in next few months, initial results look consistent with scaling, need to assure backplane volume is sufficient
 - Developing Segment to Segment active thermal control architecture
 - 9.2 m mass Looks promising even with Delta IVH
- Key technology priority is internal coronagraph demonstration
 - Contrast at Inner Working Angle over large bandpass
 - First generation approach should focus on survey efficiency