Current Status of Replicated Optics at MSFC

B. Ramsey¹, C. Speegle³, D. Engelhaupt⁴, M. Gubarev⁵, G. Thornton², Ryan Upton⁶

1 MSFC/NASA, VP62, Huntsville, AL 35812 2 MSFC/NASA, VP63, Huntsville, Al 35812 3 Raytheon IS, NSSTC 320 Sparkman Drive, Huntsville, AL 35805 4 Center for Applied Optics, University of Alabama in Huntsville, AL 35899 5 Universities Space Research Association, VP62, Huntsville, AL 35812 6 ERC, Inc., VP63, Huntsville, AL 35816

Grazing-Incidence X-Ray Optics Fabrication Techniques (For X-ray Astronomy)

•Classical Optical grinding and polishing

Missions: Chandra, Rosat, Einstein Advantage: Superb angular resolution Disadvantage: High cost, large mass, difficult to nest

•<u>Electroformed Nickel Replication</u>

Missions: XMM, JETX/Swift, SAX Advantage: High nesting factor, good resolution Disadvantage: Significant mass (high density of nickel)

<u>Segmented foil</u>

Missions: ASTRO-E, ASCA, BBXRT, HEFT, ConX (Development) Advantage: Very high nesting factor, light weight Disadvantage: Serious challenge to get good angular resolution

Approach adopted at MSFC

Electroform Nickel Replication (ENR)

Pioneered in Brera Observatory Italy for x-ray optics (Oberto Citterio)

~ 1992 - Work starts at MSFC

Electroformed Nickel Replication Process

Mandrel Preparation

1. CNC Machine, Mandrel Formation and activation From Al Bar

2. Chemical clean & Electroless Nickel (EN) plate

3. Precision Grind to 600Å, submicron figure accuracy

4. Polish and Superpolish to

3 - 4Å rms finish

5. Metrology **On Mandrel**

Shell Fabrication

6. Ultrasonic clean and Passivation to **Remove Surface Contaminants**

7. Electroform Ni Shell onto Mandrel

8. Separate Optic From Mandrel in **Cold Water Bath**

9. Nesting of **Mirror Shells**

Material Properties for Mirrors & Mandrels

	Modulus	Density	Specific Stiffness	Expansion Coefficient	CTE comparison to EN
Material	Е _м (Ра)	ρ (kg/m³)	E/ρ (MPa m³/kg)	CTE (ppm/F)	No units
Nickel-Cobalt (mirror shells)	1.86E+11	8900	20.9	7.2	1
Copper (OFHC)	1.17E+11	8940	13.1	9.4	1.3
Ni-11%P (EN)	6.20E+10	7750	8.0	7.2	1
Al-6061-T6 (mandrels)	7.10E+10	2710	26.2	13.1	1.82
Be (S-65H HIP)	3.03E+11	1840	164.7	6.4	0.88
304 SS	1.93E+11	8000	24.1	9.5	1.32
316 SS	1.93E+11	8000	24.1	8.9	1.23
416 SS	2.15E+11	7800	27.6	5.5	0.76
17-4PH SS	1.96E+11	7800	25.1	6.0	0.83
K-500 Monel (annealed)	1.80E+11	8440	21.3	7.6	1.05
Titanium: 6AI4V	1.14E+11	4430	25.7	4.9	0.68

Thermal Separation of Shells

	CTE (Ni-Co)	7.20E-06	/F	CTE (304 SS)	9.50E-06	/F	
			Ni-Co	304 SS	Ni-Co	304 SS	
Room temp (°F)	Separation Temp (°F)	ΔT (F°)	Initial shell dia. (in)	Initial mandrel dia. (in)	Final shell dia. (in)	Final mandrel dia. (in)	Delta layers (in)
70	32	-38	2.59842	2.59842	2.59771	2.59748	0.00023
70	-109	-179	2.59842	2.59842	2.59507	2.59400	0.00107
70	-330	-400	2.59842	2.59842	2.59094	2.58855	0.00239

Diamond Turning Capabilities

Moore M-40

- 40-inches of travel in X-Axis
- 30-inches of travel in Z-Axis
- Maximum swing up to 100-inches
- 4000-lbs rated Hydrostatic Spindle
- Laser feedback for positioning
- 6-Decimal Positional Accuracy

Precitech Optimum 4200

- 9.5 inches of travel in X-Axis
- 9.5 inches of travel in Z-Axis
- Maximum swing up to 12-inches
- Air bearing spindle w/ hydrostatic slides
- Positional slide feedback resolution (2.5 nm)
- 6-Decimal Positional Accuracy

Electroforming & RF Sputtering Capabilities

Plating Baths

- Electrolytic Ni-Co sulfamate
- Electrolytic Nickel sulfamate
- Electrolytic Nickel phosphorus

Iridium coating chamber

Optical Testing Facilities

Vertical long-trace profilometer

Optical Test Configuration

Stray light Facility

0.7 meter Mandrel Fabrication

- AI 6061-T6 centrifugally cast alloy
- 0.7 meter intersection diameter
- 0.711 meters long
- 10 meter focal length
- Two castings completed

0.5 meter dia. shell ->

XNAV Prototype Mandrel

304-L SS mandrel being precision turned on the Precitech 4200

304-L SS mandrel awaiting CMM measurement

National Institutes of Health (NIH) Mandrels

• 8 mandrels are currently in production

• 2.5 cm diameter shell for animal imaging

- Ellipsoid-Hyperboloid segments
- 1/f = 1/b + 1/l
- Magnification = 4.0
- Object to image = 3.2 m

Helix Mandrels & Shell

- Part of a high resolution charged particle time-of-flight (TOF) mass spectrometer.
- Helical path taken by the particles traveling between the tapered parabolic surfaces of the TOF section.
- Replicated optics allow very accurately shaped cylinders and smooth surfaces with the potential for low cylinder mass.

- HERO, for High Energy Replicated Optics, is a balloon program designed to demonstrate MSFC optics and perform science.
- Utilizes in-house-fabricated hard-x-ray mirrors plus supporting x-ray detectors, gondola and pointing system.
- Payload features a tubular 6-m-long optical bench housing ~ 100 MSFC-fabricated mirror shells

HERO Current Status

Number of modules	8		
Number of shells	14		
Inner, outer diameters	50, 94 mm		
Shell thickness	0.25 mm (~0.010 inch)		
Focal length	6 m		
Angular resolution	~ 13-15 arcsec HPD shells 20 arcsec modules		
Field of view	9 arcmin at 40 kev		

HERO Current Status

HERO payload awaiting launch in New Mexico (Spring 07)

Application: Constellation-X

- MSFC is collaborating (with Brera Observatory, Italy and SAO) on a hard-x-ray telescope prototype flight unit for the Constellation-X program, NASA's planned successor to Chandra
 - MSFC has produced two prototype mandrels & shells
 - > 426-mm-long, 230-mm diameter shell to be coated with multilayers (SAO)
 - > 426-mm-long, 150-mm diameter shell to be coated with Iridium
 - <u>100 micrometer shell thickness</u> <u>requirement to meet HXT weight</u> <u>budget</u>
 - Larger shell must have very good surface finish for multilayer coatings (< 5Å RMS)

75 micrometer thick shell →

1015X and 1023X Shell Production and Data

- MSFC has an ongoing development program in electroformed-nickelreplicated x-ray optics.
- A wide range of infrastructure supports the replicated optics program.
- When selecting mandrel & mirror materials, the thermal expansion coefficient property is crucial for separating the mirror shell from the mandrel.
- Over 150 shells total have been fabricated for the HERO balloon program and Constellation-X. Shells from 2.5 cm to 0.5 m diameter have been tested.
- While 'routine' shells have 13-15 arcsec HPD, optics at the ~ 11 arcsec have been demonstrated and 8-9 arcsec should be possible with good stress control and stable high-quality mandrels.
- Replicated optic applications have broadened over the past year at MSFC.
 For example, radionuclide imaging in small animals, mass spectroscopy, and imaging x-rays from celestial sources.