

8-meter UV/Optical Space Telescope at L2

H. Philip Stahl, Ph.D. NASA MSFC

Executive Summary

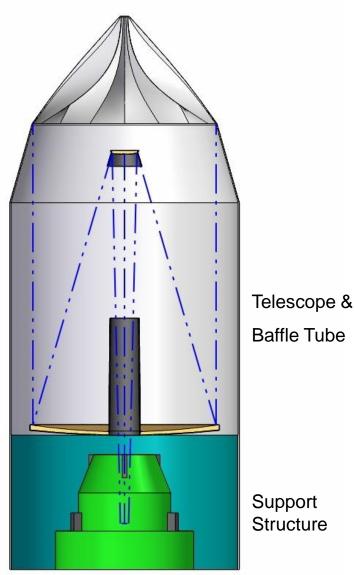
The unprecedented volume capability of an Ares V enables the launch of 8 meter class monolithic space telescopes to the Earth-Sun L2 point.

The unprecedented mass capability of an Ares V enables an entirely new design paradigm – Simplicity.

Simple high TRL technology offers lower cost and risk.

NASA MSFC has determined that a 6 to 8 meter class telescope using a massive high-TRL ground observatory class monolithic primary mirror is feasible.

NASA


Design Concept

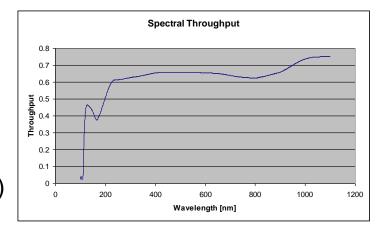
8 meter Monolithic Telescope & tube can fit inside Ares V 10 m envelop.

Minimize Cost (& Risk) by using existing ground telescope mirror technology – optics & structure.

8-meter diameter is State of Art 9 existing: VLT, Gemini, Subaru, LBT 23,000 kg (6 m would be ~13,000 kg) ~\$30M (JWST PM cost ~\$120M) 7.8 nm rms surface figure (~TPF spec)

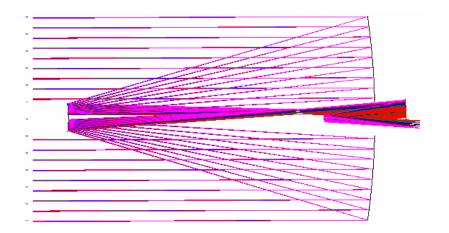
Expect similar savings for structure

Spacecraft & Science Instruments



6 meter Optical Design

Ritchey-Chretién optical configuration F/15


Diffraction Limited Performance at <500 nm Diffraction Limited FOV of 1.22 arc minute (10 arc minute FOV with Corrector Group)

Coating: Aluminum with Mg F2 overcoat

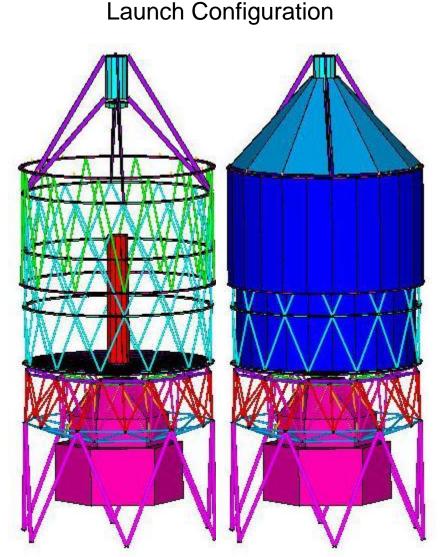
Average transmission > 63% for wave lengths of 200 to 1,000 nm Primary to secondary mirror vertex: 9089.5 mm

Primary mirror vertex to focal plane: 3,000 mm

All Reflective Design

Three Mirror Anastigmatic

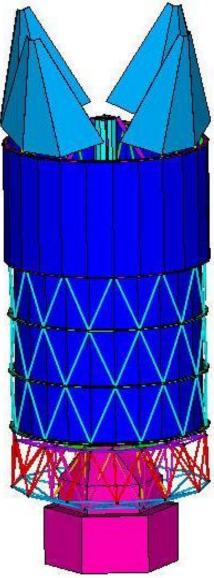
With Fine Steering Mirror


Multi-Spectral 10 arc min FOV

Reduced Throughput

Structural Design

Operational

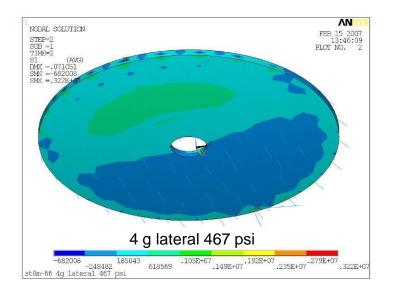

Tube is split and slides forward on-orbit. Faster PM or taller shroud may allow for one piece tube.

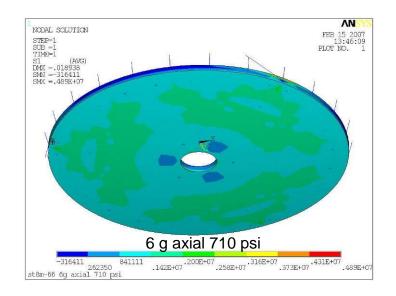
Doors can open/close

Forward Structure is hybrid of Hubble style and four-legged spider

Truss Structure interfaces with 66 mirror support attachment locations

Launch Structure attaches Truss to Ares V




Structural Analysis

Launch loads: maximum values from POST3D (not concurrent)

Axial:	4 g's
Lateral-y:	7 x 10⁻ ⁶ g's
Lateral-z:	6 x 10 ⁻⁴ g's

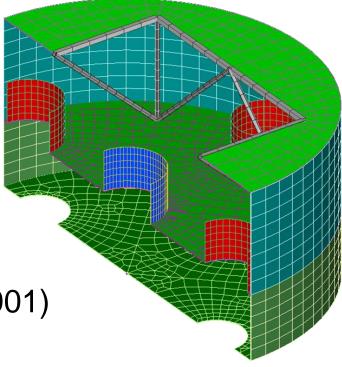
8.2 meter 175 mm thick meniscus primary mirror <u>can survive launch</u>.
66 axial supports keep stress levels below 1000 psi

Spacecraft Structural Modeling

Instrument Frame & Outer Skin Not Shown 3X Docking Latches Instrument Interface **Upper Shelf** NTO Tank Skirt 2X GHe Tank Skirt Middle Shelf 4X MMH Tank Skirt MPS Nozzle Openings

Lower Shelf

Avionics & Power System Attachments



Launch Load Case: 4.0g Axial + 2.0g Lateral

Materials: Metallic Structure Only AA 2219 for plate elements

AL 7075 for Beam Elements

Factors of Safety: (per NASA-STD-5001) Yield Factor of Safety: 1.1 Ultimate Factor of Safety: 1.4

Cross-Sectional View of Spacecraft

Structural Model Results

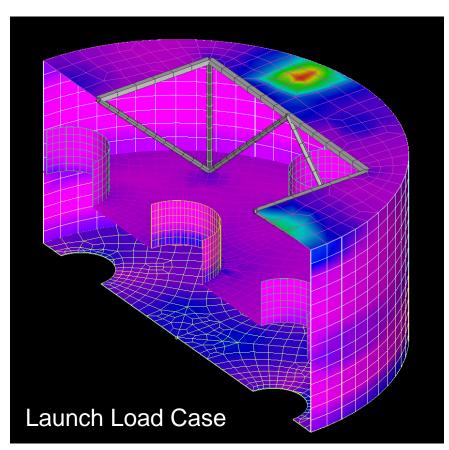
Upper Shelf:

Shelf: Isogrid Panel 0.090" (minimum pocket thickness)

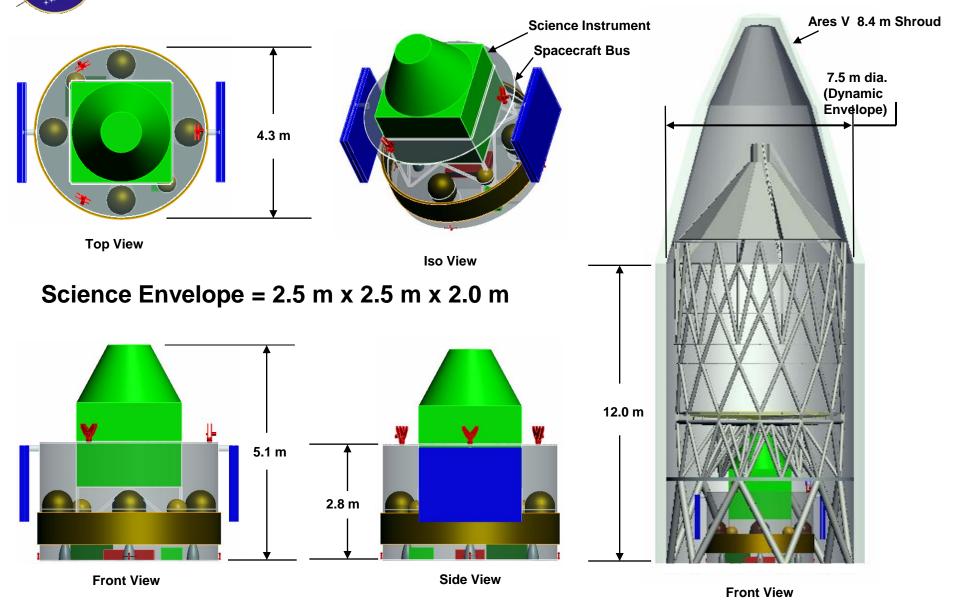
Middle Shelf:

Shelf: Isogrid Panel 0.060" (minimum pocket thickness) MMH Skirts: 0.064" thk NTO Skirt: 0.088" thk GHe Skirt: 0.040" thk

Lower Shelf:


Shelf: Isogrid Panel 0.060" (minimum (pocket thickness)

Instrument Support Frame:


Upper Support: "T" Beam, 0.095" thk Uprights: 2" diameter, 0.030" thk Angled Supports: 1.75" diameter, 0.030" thk

Outer Skin:

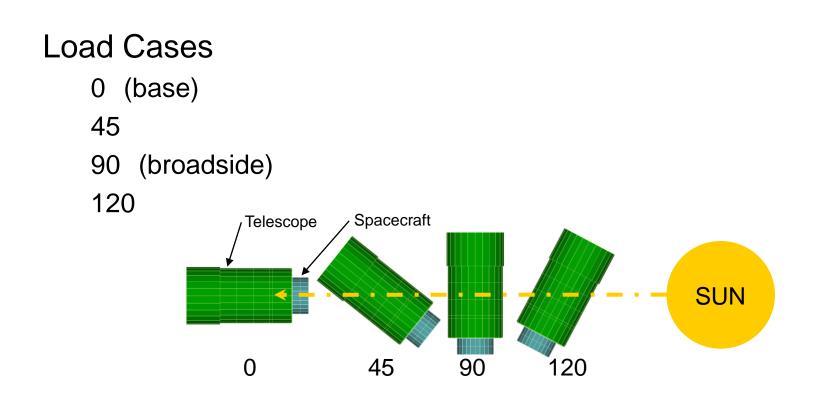
Upper Outer Skin: 0.26" thk Lower Outer Skin: 0.21" thk

Spacecraft Design Detail & Shroud Integration

NOTE: All dimensions are in meters.

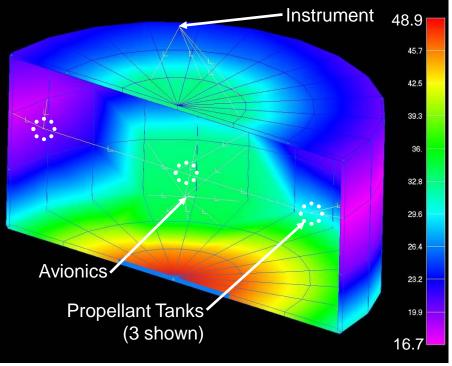
6 meter Preliminary Mass Budget

					Mass (Kg)	Herita	ige	Notes		
Prima	rv mir	ror ase	sembly		20000					
	Primary mi		Joiniory		13,000	calculated		Zerodur 17	5 mm thk	moniscus
			t structure		6,750	estimate		Structural I		meniscus
		irror center			250	estimate		Structural		
				-		estinate		Structurar	viouei	
Secor	idary i	mirror	assemb	ן אוע	680					
	Secondary	mirror			100	calculated		Zerodur 50	% light we	ight
			port & drive		150	estimate		Structual N		
	Secondary	mirror baffle	e		30	estimate		Structual N	lodel	
	Secondary	mirror spid	ler		400	estimate		Structual N	1odel	
Teleso	cope e	enclos	ure		3,600					
	Metering st	tructure wit!	h internal baffe	ls	2,800	estimate		Marcel Blu	th	
	Rear cover				300	estimate		WAG		
	Head ring				200	estimate		WAG		
	Front cover	r & actuator	r		300	estimate		WAG		
Attitude De	etermination	and Contro	ol System		150	JWST		estimate p	us JWST	scaled
Communica					76	E163				
Command	And Data H	landling Sy	stem		54	JWST				
Power					380	E163				
Thermal Ma	anagement	System			1090	JWST		400% of JV	VST	
Structures	1				920	estimate		WAG		
Guidance a	and Navigati	ion			50	estimate		50% WAG		
Propulsion					20	JWST				
Computer S	Systems				50	estimate		WAG		
Propellant	1				50	Ei63				
Docking sta	ation				1,000	estimate		WAG		
W / Bu	is mas	S			28,120					
Science Ins	strument				1500	JWST		ISIM, contr	ains Fine (Guidance Sensor
	etermination	and Contre	ol Svstem		150	JWST		estimate p		
Communica	1		,		76	EI63				
	And Data H	landling Sv	stem		54	JWST				1
Power					380	E163				
Thermal Ma	anagement	System			480	E163				
Structures					755	estimate		WAG		
Guidance a	and Navigati	ion			50	estimate		50% WAG		
Propulsion					250	E163				
Computer S	Systems				50	estimate		WAG		1
Propellant					1530	E163			2004	
Docking sta	ation				1,000	estimate		WAG	38%	6 Mass I
nce Ins	trume	nt W /	Bus ma	355	6,275					
										-

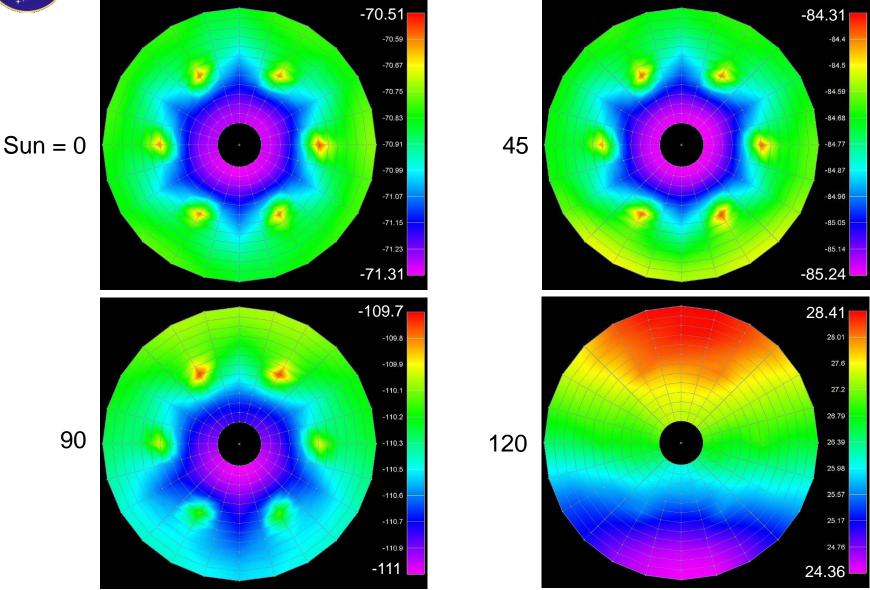

8 meter Preliminary Budget is 45,000 kg (~20% Reserve)

Thermal Analysis

Spacecraft wrapped with 10 layer MLI blankets


16.0 m² thermal radiators

Spacecraft Thermal Analysis

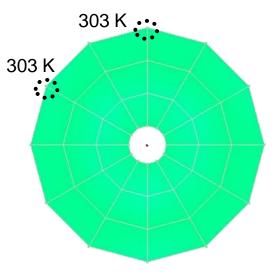

Solar Flux at L2 = 1296 W/m² applied to base Instrument Heat Output = 750 W Avionics Heat Output = 850 W Propellant tanks modeled as single nodes with heat leaks from the spacecraft walls Steady-state operational temperatures determined Spacecraft wrapped with 50 layer MLI blankets 16.0 m² thermal radiators Propellant tanks maintained with MLI and heaters Heaters required to keep propellant from freezing

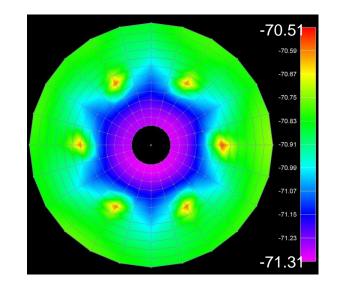
Temp in C

Primary Mirror Thermal Analysis Results

* Temperatures are in C. Note varied temperature scale for each load case.

Primary Mirror Thermal Analysis

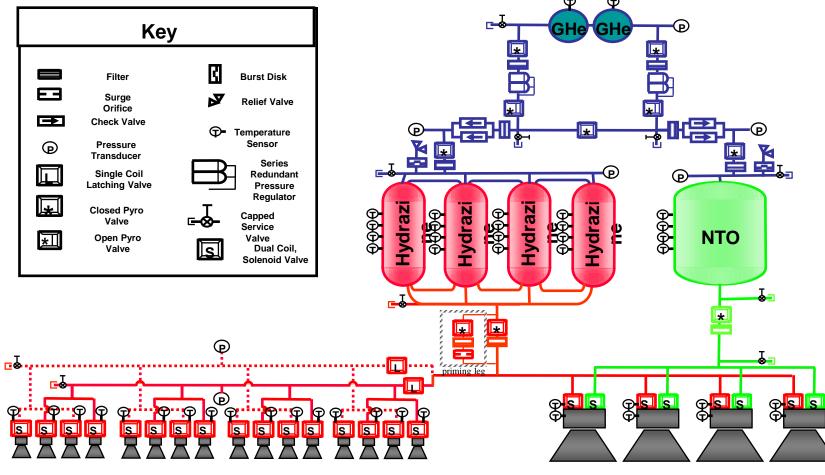

Active Thermal Management via 14 Heat Pipes yields a Primary Mirror with less than 1K Thermal Variation.


No Thermal Management yields a Cold PM

	•					
Sun Angle	Temp					
0 deg	200K					
90 deg	160K					
120 deg	300K					
with 1K Thermal Variation						

Thus, possible End of Life use as a NIR/Mid-IR Observatory.

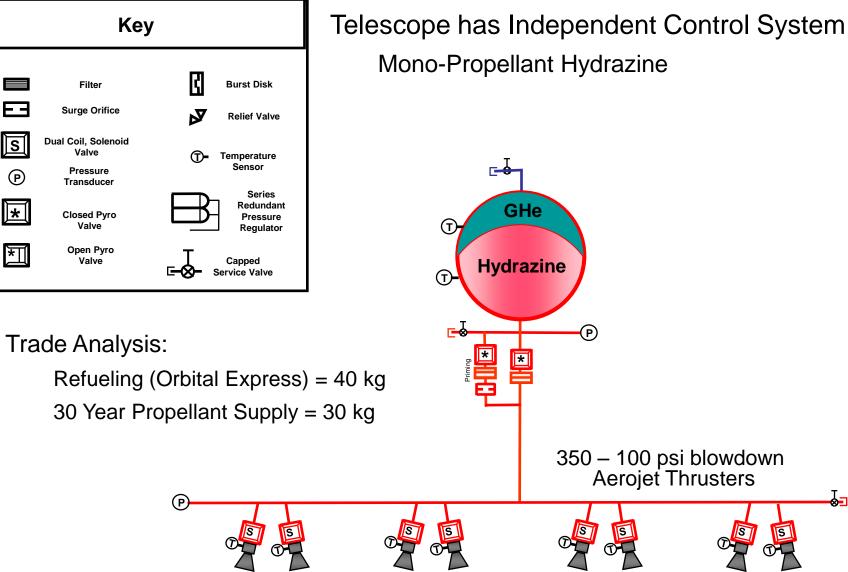
Figure Change will be driven by CTE Change from 300K to 150K Zerodur CTE is approximately 0.2 ppm. SiO2 CTE is approx 0.6 ppm.



NASA

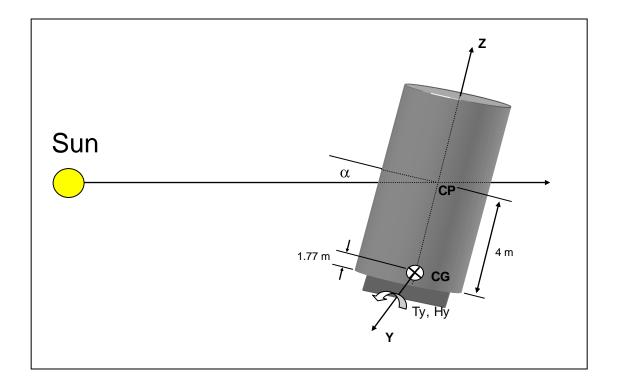
Notional Spacecraft Propulsion System

Dual Mode: Hydrazine-NTP Bi-Prop / Hydrazine Mono-Prop


Propellant for 5 yr mission with redundant Thrusters

Hydrazine Mono-Prop with RCS 20/5 lbf Thrusters (Aerojet) for Station Keeping Hydrazine-NTP Bi-Prop with four 125 lbf Thrusters (Northrop) for trip to L2

Notional Telescope Propulsion System


<u></u>

Spacecraft Reaction Wheels provide all GNC

Worst condition for solar radiation pressure torque is at sun angle = 90.

Momentum buildup occurs in one axis (y-axis)

GN&C Analysis

Two performance Parameters were analyzed and plotted against each other:

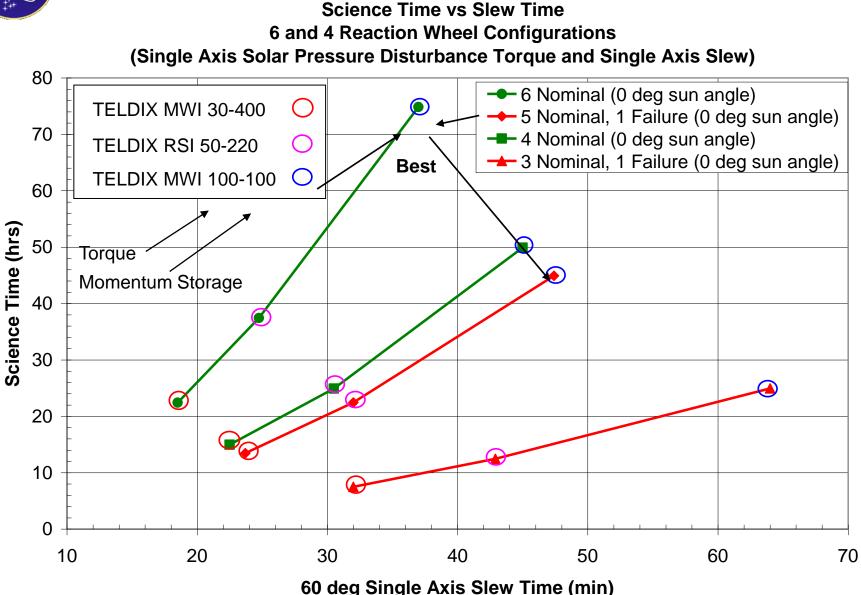
- Hours that Telescope can stare at a fixed point (remain at an inertial hold) before needing to perform a momentum dump due to solar radiation pressure torque
- How fast in minutes the Telescope can perform a 60 degree slew

6 wheel and 4 wheel configurations were analyzed along with the worst case single wheel failure for each configuration.

Each configuration was analysis for three different TELDIX reaction wheel versions with different (Torque : Momentum Storage)

Analysis

is only for the worst case sun angle = 0


As the sun angle increases so does the available science time.

did not account for any solar panel contribution to solar pressure cp location.

This is worst case since accounting for the solar panels would move the cp location closer to the cg. Also, Telescope geometry is preliminary and may change due refinement in design

GNC: Reaction Wheels

Avionics and Power Systems Assumptions

Spacecraft

Avionics

•Spacecraft avionics systems are 1-fault tolerant for 5 year life

•Guidance and navigation system includes star trackers, sun sensors, and IMUs

•AR&D consists of a LIDAR long range system, and an optical short range system

•Computers handle all normal station keeping, maneuvers, data management, and ground communications

•Communication systems consist of Ka-band HGA for ground, and s-band for local comm and backup capability

Power

•Spacecraft power systems are 1-fault tolerant for 5 year life

Power generation from two 9 m² deployable solar array wings with pointing ability
Batteries are sized for 2 hours of power for midcourse and rendezvous operations (with arrays retracted)

•Spacecraft power system includes 800 w for mirror thermal control, and 750 w for telescope instrument package

Avionics and Power Systems Assumptions

Telescope

Avionics

•Telescope avionics systems are 3-fault tolerant for 30 year life

•Minimal guidance and navigation system, used only for station keeping during spacecraft exchange

•Minimal computer capability, used mainly for station keeping during spacecraft exchange

•All health and status data sent directly to spacecraft avionics system

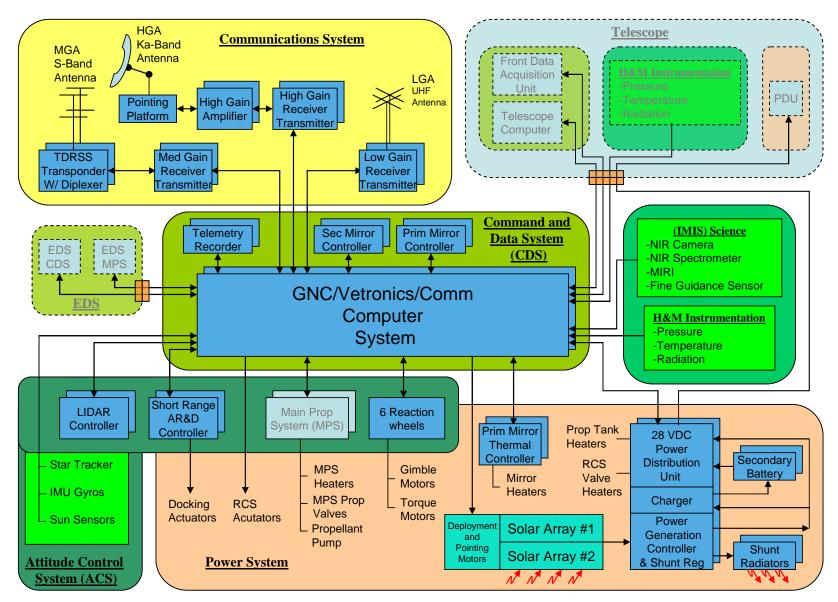
•Low gain communications capability with the servicing spacecraft only

Power

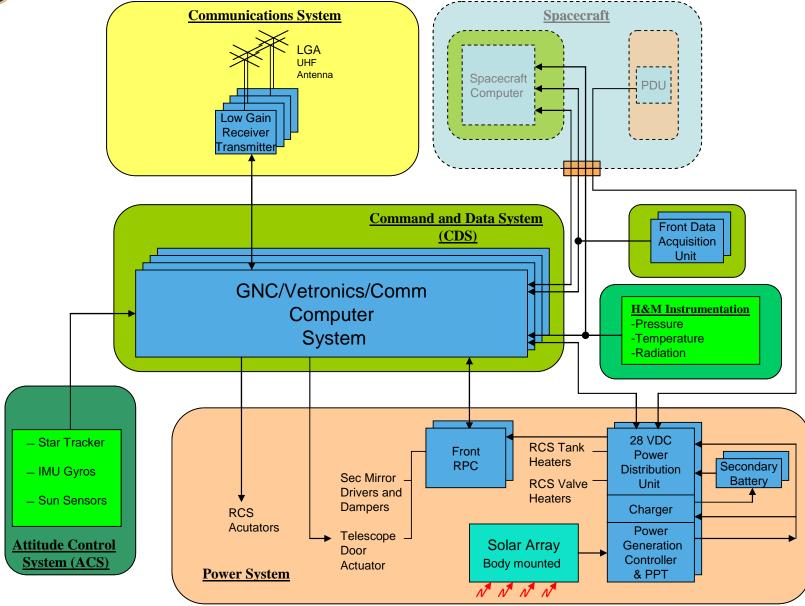
•Telescope power systems are 3-fault tolerant for 30 year life

•18 m² body mounted solar array around light tube, used for station keeping during spacecraft exchange

•Batteries sized for 0.5 hour attitude control contingency


•No active mirror thermal control during spacecraft exchange

Spacecraft Astrionics & Power Systems


6m Telescope - Spacecraft Astrionics and Power Systems

Telescope Astrionics & Power Systems

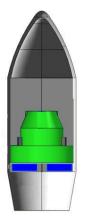
Mission Life

Initial Mission designed for a 5 yr mission life (10 yr goal) should produce compelling science results well worth the modest mission cost.

But, there is no reason why the mission should end after 5 or even 10 years.

Hubble has demonstrated the value of on-orbit servicing

The telescope itself could last 30 or even 50 years.

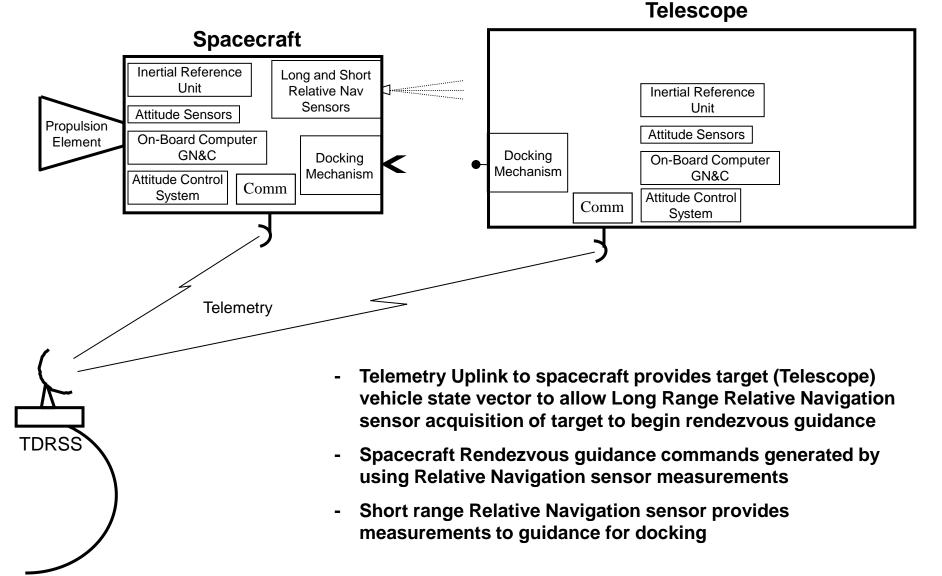


30 to 50 year Mission Life

Copy Ground Observatory Model – L2 Virtual Mountain

Design the observatory to be serviceable Telescope has no inherent life limits Replace Science Instruments every 3-5 yrs (or even 10 yrs)

Replacement Spacecraft in ELV Observatory has split bus with on-board attitude control and propulsion during servicing. (already in mass budget)



Autonomously docks to observatory; replaces all science instruments and ALL expendable components.

Spacecraft in 4.5 meter Payload Fairing

AR&D System Elements

Conclusions

The unprecedented mass/volume capability of an Ares V enables the launch of 8 meter class monolithic space telescopes to the Earth-Sun L2 point.

NASA MSFC has determined that a 6 to 8 meter class telescope using a massive high-TRL ground observatory class monolithic primary mirror is feasible.

Mature, High-TRL design enables early deployment.

Science Instruments, Expendables and Limited Life Components can be replace periodically via Spacecraft Autonomous Rendezvous and Docking.

Any Question?

