ExoPlanet Exploration Program

S2 Topic Summary

NASA Tech Days 2013 NGAS, Redondo Beach, CA

Oct 1, 2013

Stuart Shaklan Jet Propulsion Laboratory California Institute of Technology

Copyright 2013 California Institute of Technology. Government sponsorship acknowledged.

 <u>S2.01</u> Proximity Glare Suppression for Astronomical Coronagraphy <u>S2.02</u> Precision Deployable Optical Structures and Metrology <u>S2.03</u> Advanced Optical Component Systems <u>S2.04</u> Optics Manufacturing and Metrology for Telescope Optical Surfaces

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

SMD SBIR Technology Areas – S2.01, JPL

ExoPlanet Exploration Program

P

Proximity Glare Suppression for Astronomical Coronagraphy Subtopic: Subtopic Mgr: Stuart Shaklan, JPL Manager: Lead Center: JPL; Participating Centers: ARC, GSFC Center(s): Science AFTA Coronagraph (M. Levine) Traceability Exoplanet Exploration Program (G. Blackwood) Starlight suppression **Need Horizon** 2-3 vrs. for mid-decade technology downselect technologies: hybrid metal/dielectric masks; pupil Hybrid masks have been used to achieve better than 1e9 contrast in 20% apodization technologies; bandpass. Performance is limited by mask uniformity. Characterization is State of Art systems to measure optical difficult due to high-resolution needs on sub-mm mask scale. density and phase uniformity in apodizing masks AFTA needs complex circular masks. These have never been used for high contrast imaging. Equally important is the ability to characterize the Importance masks. Science AFTA Coronagraph (M. Levine) Traceability Exoplanet Exploration Program (G. Blackwood) **Need Horizon** 2-3 yrs, for mid-decade technology downselect and Artificial star and planet Simultaneous observations of an artificial planet and star at high contrast sources, with programmable ratio have not been tried yet. A front-end telescope based on low-order State of Art aberrated wavefront DM has not been used with a coronagraph. An artificial planet is needed to prove efficacy of planet extraction algorithms. The deformable front-end telescope is needed to prove ability Importance to measure and control time-variable wavefront. AFTA Coronagraph (M. Levine) Science Traceability Exoplanet Exploration Program (G. Blackwood) Wavefront Measurement and **Need Horizon** 2-3 yrs, for mid-decade technology downselect Control Technologies: scale, low-order aberration sensing; 64 x 64 DM used for 1e-9 broadband contrast. <5 dead or poor actuators. process improvements for yield, State of Art 4K wires to mirror. Low-order wavefront sensor shown to work on paper precision, and repeatability but not for multiple aberrations in the laboratory. Only one vendor's mirrors have so far achieved < 1e-9 contrast. Competing. approaches including ongoing SBIR are improving reliability and scale of MEMs DMs. LOWFS is critical to success of AFTA. Importance

SMD SBIR Proposed Technology Areas –S2.02, JPL (1/2)

ExoPlanet Exploration Program

Subtopic:	S2.02, Precision Deployable Optical Structures and Metrology				
Manager:	Greg Agnes (Lead), JPL; Rajeev Sharma, GSFC; Keith Belvin, LaRC				
Center(s):	JPL (Lead), GSFC, LaRC				
Precision deployable structures and metrology for optical telescopes (e.g., innovative active or passive deployable primary or secondary support structures); • Architectures, packaging and deployment designs for large sunshields and external occulters. Important subsystem considerations may include: • Innovative concepts for packaging fully integrated subsystems (e.g., power		Science Traceability	Astrophysics missions: AFTA/WFIRST and the New Worlds Technology Development Program (coronagraph, external occulter, and interferometer technologies); and the ground-based Cerro Chajnantor Atacama Telescope (CCAT).		
		Need Horizon	5 to 10 years		
		State of Art	Current technology is represented by JWST technologies; structural components, rigid-body segment actuators, cabling, thermal control, and actuation are all separate, resulting in high-cost, high-mass, high-complexity design, integration and test. Mission concepts for New Worlds science require 10-30 m class, cost-effective telescopes, diffraction limited from visible to far IR, operating from 4-300 K, with areal densities 1-10 kg/m ² , and packaging efficiencies of 3-10 deployed/stowed diameter. They require static and dynamic wavefront error tolerances to thermal and dynamic perturbations, large deployable sunshades for passive thermal control, and 20m to 50m class external occulters.		
components) structures; • Mechanical, precision dep technologies; • Thermally-st (CTE < 1ppm structures; • Innovative s	table materials n) for deployable systems, which nplexity, mass, ost; esting and	Importance	(1) Very High – Critical need, no feasible competitors: Current technology is passive and deployment considered risky. While JWST will demonstrate some technology, future missions will require improved packaging efficiency, lighter mass, adaptive structural alignment/stability.		

SMD SBIR Proposed Technology Areas –S2.02, JPL (2/2)

ExoPlanet Exploration Program

Subtopic: S2.02, F	S2.02, Precision Deployable Optical Structures and Metrology				
	Greg Agnes (Lead), JPL; Rajeev Sharma, GSFC; Keith Belvin, LaRC				
Center(s): JPL (Lea	JPL (Lead), GSFC, LaRC				
Additional risk reduction in operating an actively controlled telescope in orbit, via cost-effective, deployable apertures which conform to		Science Traceability	Astrophysics missions: AFTA/WFIRST and the New Worlds Technology Development Program (coronagraph, external occulter, and interferometer technologies); and the ground-based Cerro Chajnantor Atacama Telescope (CCAT)		
		Need Horizon	5 to 10 years		
CubeSat (up to 6U) or ESPA format.Demonstrate <10 micron deployment repeatability and sub-micron stability for both thermal and mechanical on-orbit disturbances.Fabricate demonstration components and subsystems with direct scalability to flight systems through validated models.Deliver a full-scale mechanism for a cubesat or ESPA ring compatible deployable aperture for Phase I, and a deployable optical metering structure with mock optical elements for Phase II.		State of Art	Current technology is represented by JWST technologies; structural components, rigid-body segment actuators, cabling, thermal control, and actuation are all separate, resulting in high-cost, high-mass, high- complexity design, integration and test. The goal for this effort is to mature technologies that can be used to fabricate 16 m class or greater, lightweight, ambient or cryogenic flight-qualified observatory systems.		
		Importance	(1) Very High – Critical need, no feasible competitors: Risk reduction in operating actively controlled telescopes in orbit		

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

^{ation} SMD SBIR Proposed Technology Areas – (S2.03, MSFC)

Subto	opic:	S2.03 Advanced Optical Systems					
Mana	ager:	H. Philip Stahl, M	MSFC (lead); Peter Blake, GSFC & Stuart Shaklan, JPL (participating)				
Center	er(s):	MSFC (lead) GS	ad) GSFC & JPL (participating)				
Affordable High-Performance Optical Component Systems for large aperture EUV, X-Ray, UV/Optical, Infrared Space Telescopes. Metrics Areal Cost < \$100k/m2 Aperture 1 to 4 meters Wavefront Figure < 10 nm rms (for UV/Optical) Cryo-defomation < 100 nm rms (for Infrared)		Science Traceability	 Astrophysics 2010 Decadal calls for mirror technology investment for: International X-Ray Observatory (IXO) and Future x-ray mission (Gen-X); Future UV/Optical and Exo-Planet missions (THEIA or ATLAST) Heliophysics 2009 Roadmap identifies mirror technology investments useful for: Origins of Near-Earth Plasma (ONEP); Ion-Neutral Coupling in the Atmosphere (INCA); Dynamic Geospace Coupling (DGC); Fine-scale Advanced Coronal Transition-Region Spectrograph (FACTS); Reconnection and Micro-scale (RAM); & Solar-C NRC NASA Technology Roadmap Assessment ranks Low-Cost High-Performance Telescopes as the highest technology priority to: Enhance & expand searches for the first stars, galaxies, & black holes, and understand the universe. Potential future Infrared missions include: SAFIR, CALISTO 				
		Need Horizon	 Technology Investment is needed now – 1 to 3 years. Affordable high-performance optical system technology needs to achieve TRL-6 by 2018 to support 2020 Decadal process. Heliophysics need is sooner. Historically, it takes 10 years to mature mirror technology from TRL-3 to 6. To achieve these objectives requires sustained systematic investment. 				
Angular Resolution < 1 arc-sec (for x-ray) Slope < 0.1 micro-radian (for EUV) Ability to fully characterize x- ray mirror optical surface and	ny) nicro-radian V) y characterize x-	State of Art	SOA Metrics as defined by JWST, Con-X and Heliophysics Areal Cost < \$4-6M/m2 Aperture 1.5 meters Wavefront Figure < 40 nm rms Cryo-defomation < 200 nm rms Resolution < 15 arc-sec Slope ~ 0.3 micro-radian				
predict angular performance (r resolution	Importance	Very High: NRC NASA Technology Roadmap Assessment states that new, ultra- stable, normal and grazing incidence mirrors to enable Low-Cost, High-Performance New Astronomical Telescopes as the most important challenge for Objective C (Expanding Knowledge of Earth and Universe).			

Shaklan

T.	Subtopic:	S2.04 Optics Manufacturing and Metrology for Telescope Optical Surfaces					
	Manager:	Peter Hill and Petar Arsenovic (GSFC/Cod	le 551)				
	Center(s):	GSFC, JPL, MSFC			ExE		
	 manufactu segments substrates materials of 2. Interferome optics used 3. Segmented azimuth an from 0.1 to 4. Low stress without interferometers 5. Low normative 1 mm to significanti 6. In-situ meto provide feeto 	metal mirror substrate materials or ring methods such as welding component into one monolith that produce thin mirror that are stiffer and/or lighter than existing or methods. etric nulling optics for very shallow conical d in x-ray telescopes. d systems commonly span 60 degrees in ad 200 mm axial length and cone angles vary of 1 degree. metrology mounts that can hold optics roducing mounting distortion. al force figuring/polishing systems operating in to 50 mm period range with minimal impact at y smaller and larger period ranges. rology systems that can measure optics and edback to figuring/polishing instruments noving the part from the spindle.	Science Traceability	 The 2010 National Academy Astro2010 Decadal Report specifically identifies optical components and the ability to manufacture and perform precise metrology on them needed to enable several different future missions, including: Light-weight x-ray imaging mirrors for future very large advanced x-ray observatories Large aperture, light-weight mirrors for future UV/Optical telescopes Broadband high reflectance coatings for future UV/Optical telescopes Potential Customers: WFIRST concepts (http://wfirst.gsfc.nasa.gov/), NGXO (http://ixo.gsfc.nasa.gov/) 			
	 Innovative methods th stiffer and/ Extreme as 	mirror substrate materials or manufacturing nat produce thin mirror substrates that are or lighter than existing materials or methods spheric and/or anamorphic optics for pupil	Need Horizon	Depending on the innovation. New metrology techniques can be used in the NEAR-TERM, while new manufacturing techniques are most probably MID-TERM and FAR-TERM.			
	 Metrology high precis Innovative than 1 kg/r mirrors to a and figure. 	method of bonding extremely lightweight (less m2 areal density) and thin (less than 1 mm) a housing structure, preserving both alignment	State of Art	At this point, it is very costly and time consuming to produce and measure the thousands of grazing incidence x-ray mirrors needed for a full system. We seek significant reduction in both expense and time. In- situ, non-contact metrology techniques are also critical for many flight missions, up to and including flagship class efforts such as JWST.			
10	lightweight using the c 12. Manufactu	e method of improving the figure of extremely and thin mirrors without polishing, such as coating stress. ring technology and wavefront sensing and applied to coronagraph applications for detection.	Importance	Very High – Critical need			

Γ