

Origins Space Telescope Mirror Needs

Mike DiPirro OST System Architect and Technologist For the OST Team

Mirror Tech Days 14-16 Nov 2017

- OST is a flagship mission study for the wavelength range of 6-600 μm
- Operates at 4 K to be sky background limited
- Primarily driven by photon collecting and not by spatial resolution

OST Concept 1

- 3 mirror unobstructed
- 37 JWST-size segment primary with overall area = 52 m²
- Athermal design
 - Backplane and mirrors are the same material
- Huge size, especially of instrument package, requires SLS with 8.4 m fairing to launch

- Uses Al alloy for high TRL and high thermal conductivity
 - Expect that at 30 micron diffraction limit that no cryo-figuring will be required
 - But, high mass material
 - Primary is 90 kg/m² compared to 68 kg/m² on JWST

- 5 m diameter equivalent area (> 19.6 m²)
 - Photon collector driven rather than angular resolution
- Smaller, fewer deployments than Concept 1
- Lighter and lower cost challenge
 - Target is <35 kg/m² (half of JWST) for OTE
 - Target is \$3B for mission
- May use figure actuators to overcome flexibility of structure and to decrease ground testing
- May have backplane and mirror as same structure

OST Concept 2 – Primary Mirror Options

Note: Options drawn to scale

JPL

- SiC is leading candidate
 - Herschel heritage
 - 3.5 m diameter, 22 kg/m²
 - Still need separate segments to assemble large enough primary
- Other ideas welcome!

Summary

- Concept 1 used Al alloy and backplane
 - 52 m² collecting area with 37 segments in hex shape
 - Athermal
 - Low material cost
 - High mass per area (90 kg/m²)
- Concept 2 will have lighter weight design
 - 20 m² collecting area minimum
 - Athermal is desired with thermally conductive 4 K materials
 - May have mirror figure actuators
 - Non-deployable primary (TBD) in elliptical/rectangular shape
 - Low mass per area (35 kg/m²)