Origins Space Telescope Mirror Needs

Mike DiPirro

OST System Architect and Technologist For the OST Team

Introduction

- OST is a flagship mission study for the wavelength range of 6-600 $\mu \mathrm{m}$
- Operates at 4 K to be sky background limited
- Primarily driven by photon collecting and not by spatial resolution

OST Concept 1

OST Concept 1

- 3 mirror unobstructed
- 37 JWST-size segment primary with overall area $=52 \mathrm{~m}^{2}$
- Athermal design
- Backplane and mirrors are the same material
- Huge size, especially of instrument package, requires SLS with 8.4 m fairing to launch
- Uses Al alloy for high TRL and high thermal conductivity
- Expect that at 30 micron diffraction limit that no cryo-figuring will be required
- But, high mass material
- Primary is $90 \mathrm{~kg} / \mathrm{m}^{2}$ compared to $68 \mathrm{~kg} / \mathrm{m}^{2}$ on JWST

Concept 2 Requirements

- 5 m diameter equivalent area (> $19.6 \mathrm{~m}^{2}$)
- Photon collector driven rather than angular resolution
- Smaller, fewer deployments than Concept 1
- Lighter and lower cost challenge
- Target is $<35 \mathrm{~kg} / \mathrm{m}^{2}$ (half of JWST) for OTE
- Target is \$3B for mission
- May use figure actuators to overcome flexibility of structure and to decrease ground testing
- May have backplane and mirror as same structure

OST Possible Concept 2 Stowed

Concept 2 Primary

OST Concept 2 - Primary Mirror Options

Note: Options drawn to scale

2.0 m segments $\left(19.9 \mathrm{~m}^{2}\right)$

$3.5 \times 7.2 \mathrm{~m}$ monolith ($19.8 \mathrm{~m}^{2}$)

- SiC is leading candidate
- Herschel heritage
- 3.5 m diameter, $22 \mathrm{~kg} / \mathrm{m}^{2}$
- Still need separate segments to assemble large enough primary
- Other ideas welcome!

Summary

- Concept 1 used Al alloy and backplane
- $52 \mathrm{~m}^{2}$ collecting area with 37 segments in hex shape
- Athermal
- Low material cost
- High mass per area ($90 \mathrm{~kg} / \mathrm{m}^{2}$)
- Concept 2 will have lighter weight design
- $20 \mathrm{~m}^{2}$ collecting area minimum
- Athermal is desired with thermally conductive 4 K materials
- May have mirror figure actuators
- Non-deployable primary (TBD) in elliptical/rectangular shape
- Low mass per area ($35 \mathrm{~kg} / \mathrm{m}^{2}$)

