

Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST)

Presented by: Matthew R. Bolcar NASA Goddard Space Flight Center

ATLAST Technology Development Team:

M. R. Bolcar, K. Balasubramanian, M. Clampin, J. Crooke, L. Feinberg, M. Postman, M. Quijada, B. J. Rauscher, D. Redding, S. Shaklan, H. P. Stahl, C. Stahle, H. Thronson

What is ATLAST?

- Mission concept study for a large space telescope operating in the UV-Optical-Infrared band
- Multiple engineering reference designs being explored by a multi-institutional team
 - 9.2-m Scaleable Segmented, 8-m Monolith, etc.

 Similar in scope to AURA's High Definition Space Telescope (HDST)

ATLAST Science

- Detect and characterize a statistically significant population of habitable exoplanets
 - Discover dozens of exoEarths
 - Look for, and potentially confirm, presence of life via UVOIR spectroscopy
 - Observe general planet populations for comparative studies
- Perform a broad array of UVOIR general astrophysics:
 - Galaxy, star, and planet formation and evolution
 - Flow of material between galaxies
 - Observations within our own solar system: planets, satellites, comets, asteroids, Kuiper Belt objects, etc.
- ATLAST's science portfolio is very similar to that outlined in AURA's *From Cosmic Birth to Living Earths* report

Top-Level System Requirements

Parameter		Requirement	Requirement Stretch Goal		
Primary Mirror Aperture		≥ 8 meters	12 meters	Resolution, Sensitivity, Exoplanet Yield	
Telescope Temperature		273 K – 293 K	273 К — 293 К -		
	UV	100 nm– 300 nm	90 nm – 300 nm	-	
Wavelength	Visible	300 nm – 950 nm	-	-	
Coverage	NIR	950 nm – 1.8 μm	950 nm – 2.5+ μm	-	
	MIR	Sensitivity to 5.0 µm*	-	Transit Spectroscopy	
Image	UV	< 0.20 arcsec at 150 nm	-	-	
Quality	Vis/NIR/MIR	Diffraction-limited at 500 nm	-	-	
Stray Light		Zodi-limited between 400 nm – 1.8 μm	Zodi-limited between 200 nm – 2.5+ μm	Exoplanet Imaging & Spectroscopy SNR	
Wavefront Error Stability		< 10 pm RMS uncorrected system WFE per control step	-	Starlight Suppression via Internal Coronagraph	
Pointing	Spacecraft	≤ 1 milli-arcsec	-	-	
runnig	Coronagraph	< 0.4 milli-arcsec	-	-	

*No requirements levied on telescope beyond the 1.8 requirement/2.5+ μ m goal.

Technology Development for ATLAST

- Our team identified 5 key technology areas to enable the ATLAST mission:
 - Internal Coronagraph
 - Starshade
 - Ultra-stable large aperture systems
 - Detectors
 - Mirror Coatings

Assumptions

- Assume a new mission start in the mid-2020's
 - Technologies must be TRL 6 by Preliminary Design Review (PDR)
 - Technology development plan must be credible in time for 2020 Decadal Survey
- Assume flexibility with respect to architecture
 - ATLAST team studied a limited set of design concepts; the technology plan takes a broader perspective
 - i.e. develop for both monolithic and segmented apertures, develop both internal coronagraphs and starshades, etc.
- Adopt a conservative approach in identifying gaps
 - This is a systems-level problem: every technology impacts every other
 - Requires detailed integrated design cycles
 - For now, assume conservatively and refine as technologies develop and modeling is performed

Technologies

Internal Coronagraph

- Instrument internal to the observatory that suppresses the on-axis starlight
 - Nimble: allows the observation of dozens of exoEarths in a fixed mission lifetime¹
 - Imposes stringent wavefront stability requirements on the telescope

Limited inner-working angle at longer wavelengths

¹Stark, et al., "Maximizing the ExoEarth Candidate Yield from a Future Direct Imaging Mission", ApJ, **795** (2014) 8

Internal Coronagraph	Parameter	Need	Capability	Current TRL		
	Raw Contrast	1×10 ⁻¹⁰ (detect) 5×10 ⁻¹⁰ (char.)	3.2×10 ⁻¹⁰			
Broadband High-Contrast	IWA	3.6 λ/D (detect) 2.0 λ/D (char.)	3 λ/D			
Coronagraph	OWA	~ 64 λ/D	16 λ/D			
includes Wavefront Sensing & Control (WFSC)	Bandpass	10-20% (instantaneous) 400 nm – 1.8 μm (total) 200 nm – 2.5 μm (goal)	10%	3		
	Aperture	Obscured, segmented	Unobscured			
	WFSC	Fast, low-order, at stellar photon rates	Slow, tip/tilt, bright lab source			
	Actuator count	128×128 (continuous) >3000 (segmented)	64×64 (continuous) <200 (segmented)			
Deformable Mirrors	Environmental	Robust, rad. hard	Testing underway	3		
	Electronics	>16 bits, high-throughput	~16 bit, dense cabling			
Autonomous Onboard Computation	Bandwidth	Closed-loop > a few Hz	Human-in-the-loop			
	Electronics	Rad. hard, >100 GFLOPS/W	<20 GFLOPS/W	5		
Starlight Suppression Image Processing	PSF Calibration	Factor of 50-100× improvement in contrast	25× demonstrated 30× goal for WFIRST	3		

Starshade

- Separate spacecraft that flies in formation with telescope to block incoming starlight
 - Not nimble: long slew times between observations limits the exoplanet yield for a fixed mission lifetime
 - No special requirements imposed on telescope
 - Inner working angle is independent of wavelength or telescope diameter

Starshade	Parameter	Need	Capability	Current TRL		
Starshade Construction and Deployment	_	Petal and central truss design consistent with an 80-m class starshade Demonstrate manufacturing and deployment tolerances	Demonstrated prototype petal for 40-m class starshade Demonstrated deployment tolerances with a 12-m Astromesh antenna with 4 petals	3		
	Edge radius	≤1 μm	≥ 10 µm			
Optical Edges	Reflectivity	≤ 10%	-	3		
	Stowed radius	≤ 1.5 m	-			
	Lateral sensing error	≤ 20 cm	≤1 m			
Formation Flight	Peak-to-peak control	< 1 m	-	3		
	Centroid estimation	≤ 0.3% of optical resolution	≥ 1%			
Contrast Performance Demonstration and Model Validation	-	1×10 ⁻¹⁰ broadband contrast at Fresnel numbers ≤ 50	4×10 ⁻¹⁰ contrast, excluding petal edges, narrowband, at Fresnel number of ~100	3		
Starshade Propulsion & Refueling		Propulsion & refueling to enable > 500 slews during 3 years of a 5-year mission	Requires study; robotic refueling appears feasible	3 11		

Ultra-stable Large Aperture Telescopes

- Provide wavefront stability for an internal coronagraph
- Incorporates entire optical system:
 - Mirrors
 - Structure
 - Thermal control system
 - Vibration isolation system
 - Metrology & Actuators

Ultra-stable Large Aperture Telescopes	Parameter	Need	Capability	Current TRL		
	Areal Density	< 36 kg/m² (Delta IVH) < 500 kg/m² (SLS)	~12 kg/m ² (SiC) ~35 kg/m ² (ULE) ~70 kg/m ² (JWST)			
	Areal Cost	< \$2 M/m²	~\$6 M/m² (JWST)			
Mirrors	Areal Production Rate	30-50 m²/year	~4 m ² /year (JWST) ~1 m ² /year (HST) ~100-300 m ² /year planned by TMT but not yet demonstrated	4		
	Moisture Expansion	Zero after initial moisture release	Continuous moisture release			
Stable Structures	Lurch	< 10 pm / wavefront control step	Micro-lurch at joint interfaces	3		
	Metrology	High-speed picometer metrology to validate performance	Nanometer speckle interferometry on JWST			
Thermal Stability	Material Stability	~10 nm/K	~100 nm/K	3		
Disturbance Isolation System	End-to-end Attenuation	140 dB at frequencies > 20 Hz	80 dB at frequencies > 40 Hz (JWST passive isolator only)	4		
Motrology & Actuators	Sensing Accuracy	~1 pm	~1 nm			
wetrology & Actuators	Control Accuracy	~1 pm	~5 nm	4 13		

Detectors

- Need improvements to enable and enhance exoplanet science
 - Improved sensitivity, lower noise

 Better UV science enabled by improvements in sensitivity and format

Detectors	Parameter	Need	Capability	Current TRL
	Bandwidth	400 nm – 1.8 μm (2.5 μm goal, sensitivity to 5 μm)	EMCCD is promising, need	
	Read Noise	<< 1 e ⁻	radhard testing, has hard	
Visible-NIR Single-photon	Dark Current < 0.001 e ⁻ /pix/s c		cutoff at 1.1 μm; HgCdTe APDs good for NIR	
Detectors for Enabling Exoplanet Science	Spurious Count Rate	Small compared to dark current	but need better dark current; MKID & TES meet requirements but require	3-5
	Quantum Eff.	> 80% over bandwidth	cryo ops.	
	Format	Format > 2k × 2k		
	Bandwidth	200 nm – 400 nm		
	Read Noise	<< 1 e [_]	EBCMOS and MCP detectors	
UV Single-photon Detectors	Dark Current	< 0.001 e ⁻ /pix/s	need better quantum eff., and improvements in	
for Enhanced Exoplanet Science	Spurious Count Rate	Small compared to dark current	lifetime;	2-4
	Quantum Eff.	> 50% over bandwidth	apply here	
	Format	> 2k × 2k		
	Bandwidth	90 nm – 300 nm	Same as above;	
Large-Format High-Sensitivity UV Detectors for General	Read Noise	< 5 e-	δ-doped EMCCD also a	4
Astrophysics	Quantum Eff.	> 70%	candidate, but needs rad hard testing and lower clock- induced charge	
	Format	> 2k × 2k		15

Mirror Coatings

• Needed for Primary & Secondary mirror surfaces

• Broadband performance from UV to NIR

• Compatible with high-contrast imaging by internal coronagraph

Mirror Coatings	Parameter	Need	Capability	Current TRL
	90 nm – 120 nm	> 70%	< 50%	2
Reflectivity	120 nm – 300 nm	> 90%	80%	3
	> 300 nm	> 90%	> 90%	5
	90 nm – 120 nm	< 1%	TBD	2
Uniformity	120 nm – 250 nm	< 1%	> 2%	3
	> 250 nm	< 1%	1-2%	4
Polarization	≥ 90 nm	< 1%	Not yet assessed; requires study	2
Durability	_	Stable performance over mission lifetime (10 years minimum)	Stable performance, but with limited starting reflectivity below 200 nm	4 17

Technology Development Activities:

- WFIRST coronagraph development milestones relevant to ATLAST:
 - Low-order WFSC (LOWFS) subsystem development towards 0.4 mas RMS pointing (9/30/15)
 - Detector electronics development towards < 0.001 e⁻/pix/s dark current and < 1 e⁻/pix/frame (8/25/16)
 - PIAACMC mask development and demonstration towards 10⁻⁸ contrast over 10% bandpass (9/30/16)
 - Contrast demonstration in a simulated dynamic environment (9/30/16)

Technology Development Activities (cont.):

- New & ongoing SAT TDEM (coronagraph, starshade, DM)
 - Achromatic VNC Technology Maturation (Lyon/GSFC)
 - Segmented aperture nulling coronagraphy (Lyon/GSFC)
 - Next Generation VNC (Bolcar/GSFC)
 - Starshade straylight/edge scatter modeling & materials development (Casement/NGAS)
 - Field demonstration of starshade starlight suppression (Glassman/NGAS)
 - Optical & mechanical verification of external occulter (Kasdin/Princeton)
 - Formation flying for external occulters (Kasdin/Princeton)
 - Development of formation flying sensors (Cash/U. of Colorado, Boulder)
 - Optical shield for starshade inner disk subsystem (Thompson/JPL)
 - MEMS DM Development for space-based exoplanet detection (Bierden/Boston MMC)
 - Environmental testing of MEMS DMs (Helmbrecht/IrisAO)

Technology Development Activities (cont.):

- New & ongoing SAT TCOR (coatings, detectors, mirrors):
 - UV Coatings, Materials and Processes (Bala/JPL)
 - Plasma enhanced ALD for FUV interference filters (Scowen/ASU)
 - High-efficiency detectors in photon-counting and large FPAs (Nikzad/JPL)
 - Advanced FUV/UV/Visible photon-counting ultralow-noise detectors (Nikzad/JPL)
 - Development of large-area photon-counting UV detectors (Vallerga/Berkely)
 - Advanced Mirror Technology Development Phase 2 (Stahl/MSFC)

Technology Development Activities (cont.):

- Other:
 - Segmented aperture coronagraphy assessment (Shaklan/JPL, ExEp Program Office)

Development	2020 Decadal Review						1	TRL 5			
Activities	FY16	FY17	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26
Internal Coronagraph	Leverage WFIRST/AFTA Investment Fund Development of new promising techniques			Develop top 3-4 candidates to TRL 4 WFS		ownselect top 2 candidates orporate DM and /FSC technology		Select flight primary and backup Develop to TRL 6			
Starshade	Continue investments in truss, formation flight, edge techs. Close on model validation tests			truss, ochs. o tests	Demonstrate deployment of 80-m class truss & petals Engage human/robotic servicing community			Environmental testing of structure, blankets, edges, etc.			
Ultra-stable Large Aperture Telescopes	Separate subscale demonstrations of structures & disturbance isolation AMSD-like mirror development program			ires & i oment	Combine structure, thermal, and dynamic systems; demonstrate stability Select 2 candidate mirror techs.			Subscale stability demonstration testbed integrates all components			
Detectors	Radiation test promising EM techs. NASA/industry/academia collaborate on parallel tech			MCCD nia echs.	Downselect promising technologies to focus resources			g urces	Final environmental and radiation qualification of selected technologies		ental on elected es
Mirror Coatings	Individually develop ref polarization, durability perf sampl		eflectivity, rformanc ples	, uniformi e on smal	ty, I scale	Full sca class m event n	le coating irror; Scal nonolithic	demonst eable to l architect	ration on arger miri ure is bas	1.5-m rors in elined	

Conclusions

- Multi-institutional ATLAST team, studying a large UV-Optical-IR telescope with two science goals:
 - Detect and characterize habitable exoplanets
 - Broad array of general astrophysical observations
- Identified 5 key technologies to enable ATLAST
 - Internal Coronagraph
 - Starshade
 - Ultra-stable large-aperture telescopes
 - Detectors
 - Mirror Coatings
- Although numerous current technology development activities are underway, available funding is insufficient to achieve TRL 6 in time for PDR in the mid-2020s

Questions?