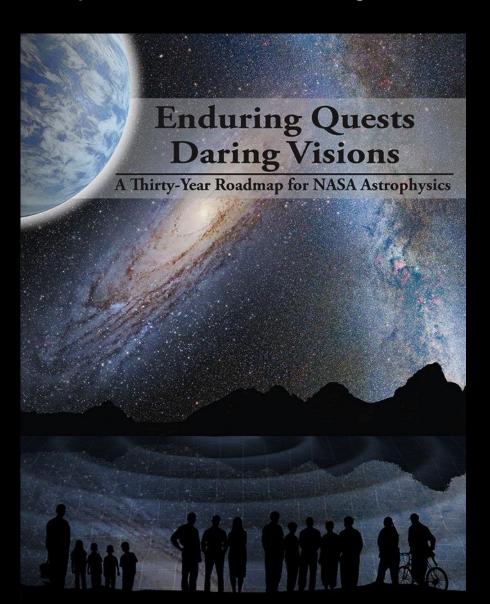
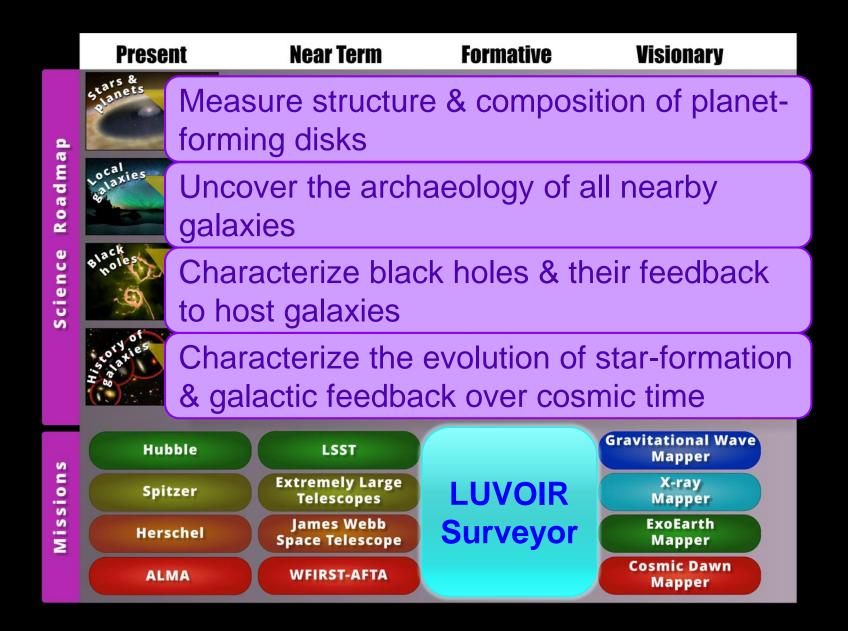
THE LUVOIR MISSION CONCEPT: UPDATE & TECHNOLOGY OVERVIEW

Matthew R. Bolcar (NASA GSFC)

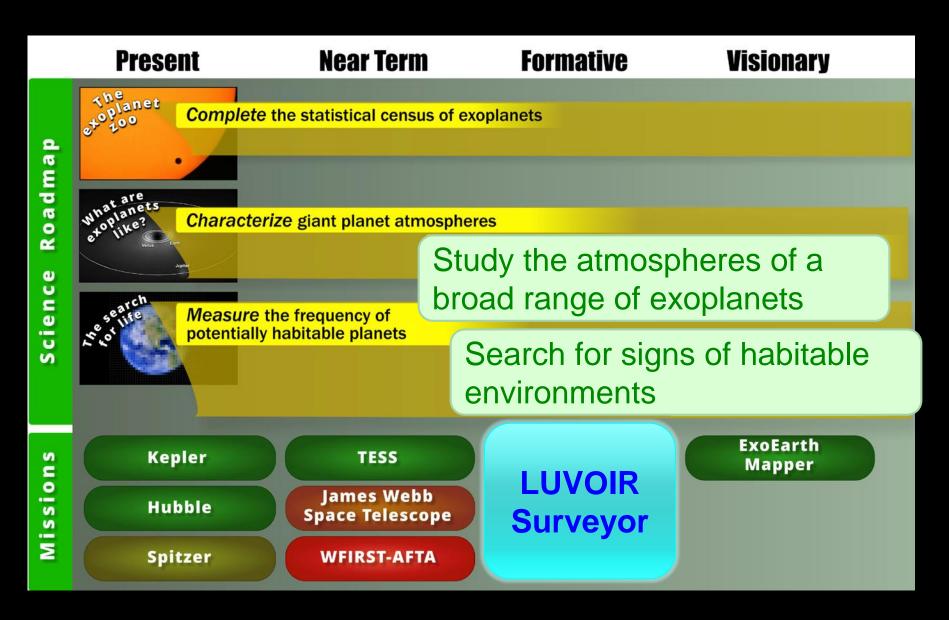
SPIE Mirror Tech Days Greenbelt, MD November 1, 2016


What is the Large UV/Optical/Infrared Surveyor?

General purpose, multiwavelength observatory with broad science capabilities


Roots in previous studies over last decade(s):

ATLAST, HDST, etc.


Acronym comes from 2013 Astrophysics Visionary Roadmap

Cosmic origins science goals in Roadmap

Exoplanet science goals in Roadmap

Study Update

Study progress to date:

- 1st Science & Technology Definition Team (STDT) Face-to-Face Meeting (May 2016)
 - Science overview and objectives
 - Initial technology gap assessment
 - Organized into working groups
 - Further develop science objectives, technology needs, and simulation tools

LUVOIR community working groups

Exoplanets

Leads: Mark Marley (Ames), Avi Mandell (GSFC)

Cosmic Origins

Leads: John O'Meara (St. Michael's), Jane Rigby (GSFC)

Solar System

Leads: Walt Harris (LPL), Geronimo Villanueva (GSFC)

Simulations

Leads: Jason Tumlinson (STScI), Aki Roberge (GSFC)

Technology

Leads: David Redding (JPL), Matt Bolcar (GSFC)

Study progress to date:

- 1st Science & Technology Definition Team (STDT) Face-to-Face Meeting (May 2016)
 - Science overview and objectives
 - Initial technology gap assessment
 - Organized into working groups
 - Further develop science objectives, technology needs, and simulation tools
- 2nd Face-to-Face Meeting (Aug. 2016)
 - Identified first-generation instrument suite
 - Formed instrument teams to refine science case and performance metrics

Current LUVOIR instrument suite

Optical / NIR Coronagraph – Laurent Pueyo (STScI)

Imaging and low-resolution spectroscopy

UV Multi-Object Spectrograph - Kevin France (U of Colorado)

High-resolution point-source spectroscopy and medium-resolution multi-object spectroscopy

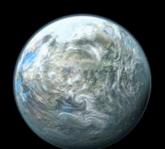
Optical / NIR Wide-field Imager – Marc Postman (STScI)

Imaging (4 – 6 arcmin field-of-view)

Optical / NIR Spectrometer – Courtney Dressing (Caltech)

- Multiple resolution modes up to R ~ 10⁵
- Point-source / fiber fed

Upcoming work...


- 3rd Face-to-Face Meeting (Nov. 9-10, Yale)
 - Day 1: Select architecture(s) to study
 - Aperture size, on- vs. off-axis, etc.
 - Day 2: Joint meeting with Habitable Exoplanet (HabEx) STDT
 - Collaborate on science & technology topics relevant to both studies
- Dec. 2016 into 2017:
 - Gather inputs from instrument teams
 - Kick-off detailed engineering design studies
 - Integrated Design Center at GSFC

LUVOIR as currently envisaged

Summary of Capabilities

- FUV to NIR wavelength sensitivity
- Suite of imagers and spectrographs
- High-contrast capability (~ 10⁻¹⁰)
- Aperture diameter of order 8 16 m
- Serviceable (astronaut or robot)
- "Space Observatory for the 21st Century" decades of science, instrument upgrades (like Hubble), capability to answer questions we have not yet conceived

Technology

The Technology Working Group

 Over 50 members from NASA centers, academia, industry, and international partners

- Six subgroups working on technology areas
 - Coronagraphy
 - Ultra-stable Opto-mechanical Systems
 - Detectors
 - Mirror Coatings
 - Starshades
 - Instrument Components

Initial technology prioritization

- "O1" Deliverable from Study Management Plan
 - Delivered to NASA HQ and Program Offices in June 2016

Prioritization will be revised each June as the Study progresses

Full prioritization report available at:

http://asd.gsfc.nasa.gov/ luvoir/tech/

Technology Area	Difficulty	Urgency
High-Contrast Segmented-Aperture Coronagraphy	CRITICAL	CRITICAL
Ultra-Stable Opto-mechanical Systems (includes Sensing, Control, Mirrors, and Structures)	CRITICAL	CRITICAL
Large Format, High Sensitivity, High-Dynamic Range UV Detectors	HIGH	HIGH
Vis/NIR Exoplanet Detectors	HIGH	MED
Starshade	HIGH	MED
Mirror Coatings	MED	MED
MIR (3–5 μm) Detectors	LOW	LOW

Initial technology prioritization

- "O1" Deliverable from Study Management Plan
 - Delivered to NASA HQ and Program Offices in June 2016

Prioritization will be revised each June as the Study progresses

Full prioritization report available at:
http://asd.gsfc.nasa.gov/luvoir/tech/

Technology Area	Difficulty	Urgency
High-Contrast Segmented-Aperture Coronagraphy	CRITICAL	CRITICAL
Ultra-Stable Opto-mechanical Systems (includes Sensing, Control, Mirrors, and Structures)	CRITICAL	CRITICAL
Range UV Detectors	HIGH	HIGH
Vis/NIR Exoplanet Detectors	HIGH	MED
Starshade	HIGH	MED
Mirror Coatings	MED	MED
MIR (3–5 μm) Detectors	LOW	LOW

Stability for high-contrast is #1 challenge

"10 pm RMS per 10 minutes"

Set by coronagraph's sensitivity to wavefront error.

Stability for high-contrast is #1 challenge

"10 pm RMS per 10 minutes"

Set by coronagraph's sensitivity to wavefront error.

Set by how fast the wavefront control loop can be closed.

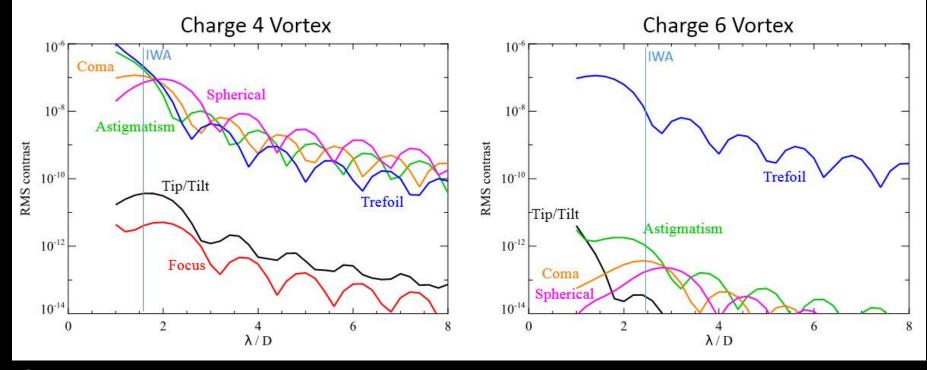
- High-contrast imaging through wavefront stability
 - Stiff, thermally-stable materials and structures
 - Active and passive dynamic isolation
 - Thermal sensing & control at the milli-Kelvin level
 - Metrology to verify performance at the picometer level

- High-contrast imaging through wavefront stability
- High-contrast imaging through wavefront control
 - Slow, low-order wavefront control from stellar photons
 - Fast, higher-order wavefront control from metrology
 - Edge sensors, laser truss, artificial guide star, etc.
 - Go from 10 minutes to seconds or less

- High-contrast imaging through wavefront stability
- High-contrast imaging through wavefront control
- High-contrast imaging through wavefront tolerance
 - Design coronagraphs that can tolerate >10 pm of WFE
 - New optimization techniques open up the design space
 - Vector vortex, aperture masks, nulling interferometry, etc.
 - Tolerate 100s of pm or even nanometers of WFE

- High-contrast imaging through wavefront stability
- High-contrast imaging through wavefront control
- High-contrast imaging through wavefront tolerance
- Solution consists of a combination of all three

- High-contrast imaging through wavefront stability
- High-contrast imaging through wavefront control
- High-contrast imaging through wavefront tolerance
- Solution consists o


This is the focus of ExEP funding via SAT program and the Segmented Coronagraph Design & Analysis (SCDA) study.

ree

Recent results from vector vortex team:

Vortex Low-Order Aberration Sensitivity

RMS change in background contrast @ λ =550 nm with the introduction of 100 picometers RMS of the specified aberration

Courtesy D. Mawet, et al.

- High-contrast imaging through wavefront stability
- High-contrast imaging through wavefront control
- High-contrast imaging
- Solution consists of a

These two we invite industry / academia to pursue through 2017 SAT, APRA, and SBIR programs.

erance

- High-contrast imaging through wavefront stability
- High-contrast imaging through wavefront control
- High-contrast imaging through wavefront tolerance
- Solution consists of a combination of all three

- Uniform, zero CTE at operation temperature
- Zero lurch (stable interfaces, no internal stress)
- High stiffness
- Zero moisture expansion (CME) after initial release

- Dynamic isolation from disturbances
 - Passive reaction wheel isolation
 - Active or passive isolation between SC & telescope
 - Power & data transmission across interface without mechanical short
 - ~140 dB end-to-end isolation

- Dynamic isolation from disturbances
- Distributed thermal architecture
 - Cold sunshield with constant temperature
 - Warm-biased telescope
 - Milli-Kelvin sense & control on segments and backplane

- Dynamic isolation from disturbances
- Distributed thermal architecture

- Stable-actuators
 - "Set and forget"
 - Low-noise electronics

- High-contrast imaging through wavefront stability
- High-contrast imaging through wavefront control
- High-contrast imaging through wavefront tolerance
- Solution consists of a combination of all three

Sensing

- Low/Mid-order wavefront sensing
- Edge-sensing at primary mirror segments
- Laser metrology between segments, or PM-to-SM
- Strain-gauge sensing with actuators
- Artificial Guide Star (AGS) sensing

Sensing

- Control
 - Rigid-body segment actuation
 - Deformable mirrors
 - Macro vs. MEMS
 - Continuous vs. segmented
 - High-authority control and location in system
 - PMN vs. piezo actuation

Sensing

Control

- Electronics
 - High-digitization (> 20 bit)
 - Multi-plexed
 - Low-noise, stable electronics & cabling

Sensing

Control

Electronics

- Algorithms
 - High-speed
 - Autonomous

State-of-the-Art & TRL

- Many of the previous components are at TRL 3-5
 - Lots of work in mirror development (MMSD, AMTD, AHM, etc.)
 - Disturbance isolation at ~TRL 5-6
 - Deformable mirrors will be TRL 9 with WFIRST
 - Etc.

- Notable exceptions (TRL 1-2?):
 - Artificial guide star
 - Stable structures

- The system, however is TRL 1-2
 - Need system-level demonstration of stability

Summary

- LUVOIR Study well underway
 - Diverse participation from academia, industry, NASA centers, and international partners
- Detailed architecture designs of telescope and instruments to begin early 2017
- Technology Working Group hard at work
 - Assessing technologies for current readiness
 - Drafting technology development plan
- Invite industry participation in solving wavefront stability issue with architecture demonstrations

Face-to-face meetings

3rd meeting Nov 9 – 10, 2016 @ Yale University, joint w/ the HabEx team

Observers welcome at all LUVOIR meetings

Backup

Get involved with LUVOIR

Website: http://asd.gsfc.nasa.gov/luvoir/

Contact us!

Study Chairs

Debra Fischer – <u>debra.fischer@yale.edu</u>

Bradley Peterson – peterson.12@osu.edu

GSFC Study Scientist & Deputy

Aki Roberge — aki.roberge@nasa.gov

Shawn Domagal-Goldman - shawn.goldman@nasa.gov

NASA Program Scientist & Deputy

Mario Perez – <u>mario.perez@nasa.gov</u>

Erin Smith — <u>erin.c.smith@nasa.gov</u>

STDT voting members

Debra Fischer (Yale) (

Brad Peterson (Ohio State / STScI)

Jacob Bean (Chicago)

Daniela Calzetti (U Mass)

Rebekah Dawson (Penn State)

Courtney Dressing (Caltech)

Lee Feinberg (NASA GSFC)

Kevin France (Colorado)

Jay Gallagher (Wisconsin)

Olivier Guyon (Arizona)

Walt Harris (Arizona / LPL)

Mark Marley (NASA Ames)

Leonidas Moustakas ____ (JPL)

John O'Meara (St. Michael's)

Vikki Meadows (Washington)

Ilaria Pascucci (Arizona)

Marc Postman (STScI)

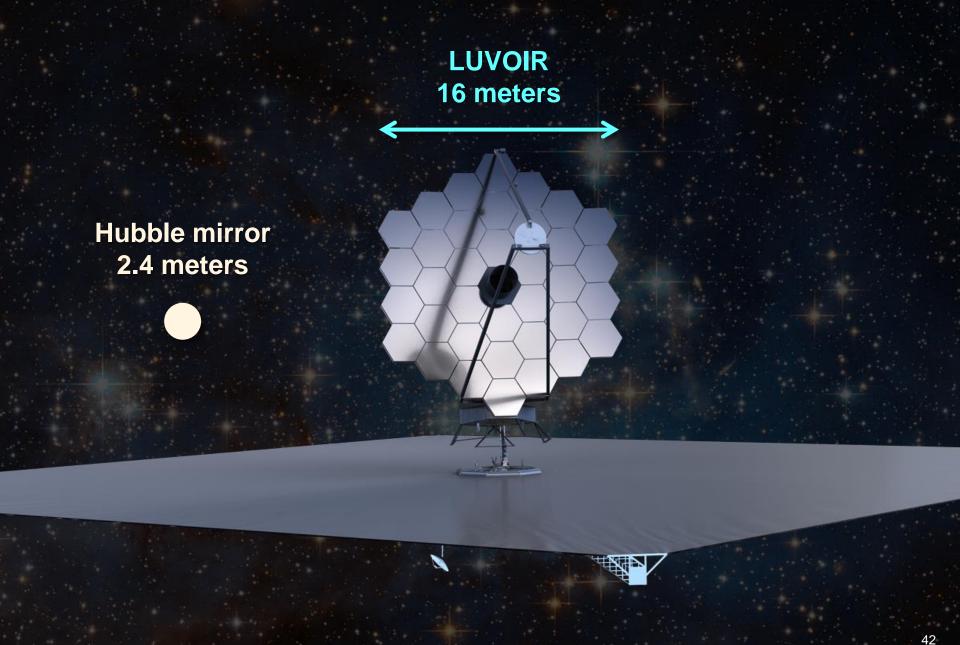
Laurent Pueyo (STScI)

David Redding (JPL)

Jane Rigby (NASA GSFC)

Aki Roberge (NASA GSFC)

David Schiminovich (Columbia)



Britney Schmidt (Georgia Tech)

Karl Stapelfeldt (JPL) 4

A possible LUVOIR architecture

"Tech Notes"

- Series of brief, high-level notes
- Intended to inform the STDT on technology challenges and trades:
 - Coronagraphs
 - Starshades
 - Cold Temperature Considerations
 - Long-wavelength Performance
 - Exoplanet Detectors

- UV Detectors
- Launch Vehicles
- Polarization & Coronagraphy
- UV Coatings & Shortwave Cutoff

Available at http://asd.gsfc.nasa.gov/luvoir/tech/

Technology Assessments (in progress...)

 Rigorous assessments of <u>demonstrated</u> performance for <u>specific</u> technologies

- Specific technology components and systems, instead of broad technology areas
- Demonstrated performance supported by references instead of perceived state-of-the-art
- Rigorous, quantitative description of test configuration, environment, and results

Technology Assessments (in progress...)

- Distinguish true technology development needs from engineering or manufacturing challenges
- Identify highest-maturity, lowest-risk technologies
- Inform engineering design efforts of likely capabilities
- Draft specific development plans for promising technologies