
Mirror Technology Days Workshop Annapolis, MD, November 2015

Exoplanet Exploration Program Technology Needs and Opportunities

Dr. Nick Siegler Program Chief Technologist NASA Exoplanet Exploration Program

© 2015 California Institute of Technology. Government sponsorship acknowledged.

Starlight Suppression is <u>the</u> Key Technology in the Search for Life on Earth-Size Exoplanets

Enabling Starlight Suppression Technologies External Occulters (Starshades)

Nulling Interferometry

Internal Occulters (Coronagraphs)

NASA's **Exoplanet**Missions

Spitzer

Hubble¹

coronagraph

Driving science is

direct imaging of

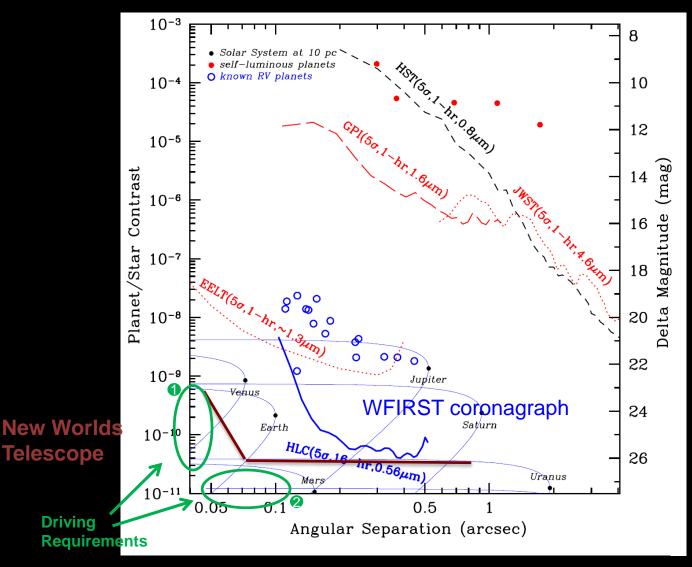
exo-Earths

Kepler

coronagraph

First high-contrast coronagraph baselined; starshade may be studied

JWST² (2018)


> New Worlds Telescope (~ 2030s?)

Proposed Pre-2020 Decadal Mission Concept Studies

- FAR IR Surveyor
- Habitable Exoplanet Imaging Mission
- UV/Optical/IR Surveyor
- X-ray Surveyor

¹ NASA/ESA Partnership
 ² NASA/CNES/ESA Partnership

Driving Requirements for Imaging Exo-Earths

Credit: Wes Traub

ExEP Technology Gap Lists

Starshade Technology Gap List

Table A.3 Coronagraph Technology Gap List.

ID	Title	Description	Current	Required
6-1	Specialized Coronagraph Optics	Masks, apodizers, or beam-shaping optics to provide starlight suppression and planet detection capability.	A linear mask design has yielded 3.2×10 ⁻¹⁰ mean raw contrast from 3–16 A/D with 10% bandwidth using an unobscured pupil in a static lab demonstration.	Circularly symmetric masks achieving $\leq 1 \times 10^{10}$ contrast with IWA $\leq 33/D$ and $\geq 10\%$ bandwidth on obscured or segmented pupils.
C-2*	Low-Order Wavefront Sensing & Control	Beam jitter and slowly varying large-scale (low- order) optical aberrations may obscure the detection of an exoplanet.	Tip/tilt errors have been sensed and corrected in a stable vacuum environment with a stability of $10^{-3}\lambda$ rms at sub-Hz frequencies.	Tip/tilt, focus, astigmatism, and coma sensed and corrected simultaneously to $10^{-4}\lambda$ (~10's of pm) rms to maintain raw contrasts of $\le 1 \times 10^{-10}$ in a simulated dynamic testing environment.
C-3*	Large-Format Ultra-Low Noise Visible Detectors	Low-noise visible detectors for faint exoplanet characterization with an Integral Field Spectrograph.	Read noise of < 1 e-/pixel has been demonstrated with EMCCDs in a 1k × 1k format with standard read- out electronics	Read noise < 0.1e ⁻ /pixel in a ≥ 4k × 4k format validated for a space radiation environment and flight-accepted electronics.
C-4*	Large-Format Deformable Mirrors	Maturation of deformable mirror technology toward flight readiness.	Electrostrictive 64x64 DMs have been demonstrated to meet ≤ 10-9 contrasts in a vacuum environment and 10% bandwidth.	≥ 64x64 DMs with flight-like electronics capable of wavefront correction to ≤ 10 ⁻¹⁰ contrasts. Full environmental testing validation.
C-5	Efficient Contrast Convergence	Rate at which wavefront control methods achieve 10 ⁻¹⁰ contrast.	Model and measurement uncertainties limit wavefront control convergence and require many tens to hundreds of iterations to get to 10 ⁻¹⁰ contrast from an arbitrary initial wavefront.	Wavefront control methods that enable convergence to 10 ⁻¹⁰ contrast ratios in fewer iterations (10-20).
C-6*	Post-Data Processing	Techniques are needed to characterize exoplanet spectra from residual speckle noise for typical targets.	Few 100x speckle suppression has been achieved by HST and by ground-based A0 telescopes in the NIR and in contrast regimes of 10-5 to 10-6, dominated by phase errors.	A 10-fold improvement over the raw contrast of -10% in the visible where amplitude errors are expected to no longer be negligible with respect to phase errors.

*Topic being addressed by directed-technology development for the WFIRST/AFTA coronagraph. Consequently, coronagraph technologies that will be substantially advanced under the WFIRST/AFTA technology development are not eligible for TDEMs.

JPL Document D-94249


Exoplanet Exploration Program Technology Plan

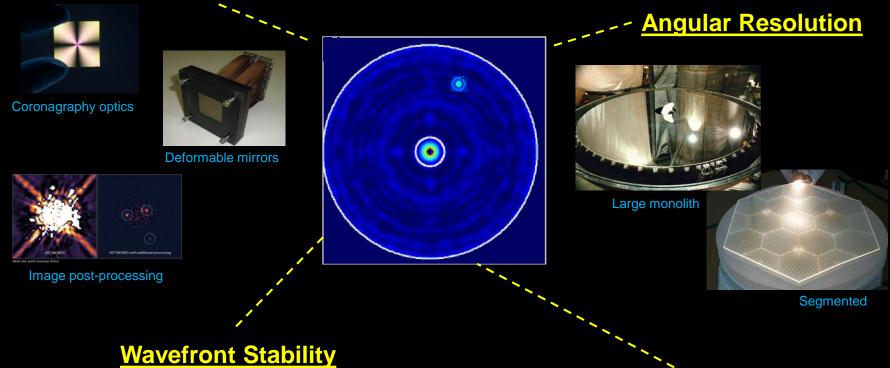
Appendix: 2015


Peter Lawson with revisions by Nick Siegler and Brian Lim

National Aeronautics and Space Administration

jet Propulsion Laboratory California Institute of Technology Pasadena, California

http://exep.jpl.nasa.gov/technology/

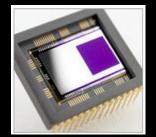


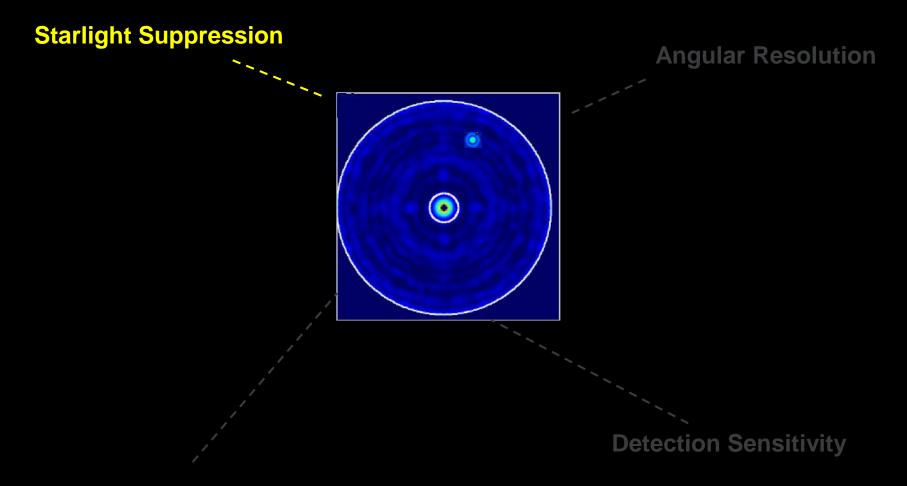

Coronagraph Technology Gap List

Table A.4 Starshade Technology Gap List

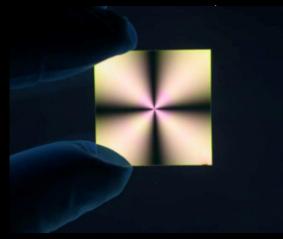
ID	Title	Description	Current	Required
S-1	Control Edge- Scattered Sunlight	Limit edge-scattered sunlight with optical petal edges that also handle stowed bending strain.	Graphite edges meet all specs except sharpness, with edge radius ≥10 µm.	Optical petal edges manufactured of high flexural strength material with edge radius ≤ 1 µm and reflectivity ≤ 10%.
S-2	Contrast Performance Demonstration ar Optical Model Validation	Experimentally validate the equations that predict the contrasts achievable with a starshade.	Experiments have validated optical diffraction models at Fresnel number of ~500 to contrasts of 3×10 ⁻¹⁰ at 632 nm.	Experimentally validate models of starlight suppression to ≤ 3×10 ⁻¹¹ at Fresnel numbers ≤ 50 over 510- 825 nm bandpass.
S-3	Lateral Formation Flying Sensing Accuracy	Demonstrate lateral formation flying sensing accuracy consistent with keeping telescope in starshade's dark shadow.	Centroid accuracy ≥ 1% is common. Simulations have shown that sensing and GN&C is tractable, though sensing demonstration of lateral control has not yet been performed.	Demonstrate sensing lateral errors $\leq 0.20m$ at scaled flight separations and estimated centroid positions $\leq 0.3\%$ of optical resolution. Control algorithms demonstrated with lateral control errors $\leq 1m$.
5-4	Flight-Like Petal Fabrication and Deployment	Demonstrate a high- fidelity, flight-like starshade petal and its unfurling mechanism.	Prototype petal that meets optical edge position tolerances has been demonstrated.	Demonstrate a fully integrated petal, including blankets, edges, and deployment control interfaces. Demonstrate a flight-like unfurling mechanism.
S-5	Inner Disk Deployment	Demonstrate that a starshade can be autonomously deployed	Demonstrated deployment tolerances with 12m heritage	Demonstrate deployment tolerances with flight-like, minimum half-scale inner
5		to within the budgeted tolerances.	Astromesh antenna with four petals, no blankets, no outrigger struts, and no launch restraint.	disk, with simulated petals, blankets, and interfaces to launch restraint.

Starlight Suppression


Low-order wavefront control


Telescope vibration control

Detection Sensitivity


Ultra-low noise detectors (visible and infrared wavelengths)

Segment phasing and rigid body control

Wavefront Stability

Starlight Suppression

Coronagraphy optics

Future Needs:

- Raw contrast < 10⁻⁹ (obscured and segmented)
- IWA $\leq 3 \lambda/D$
- Bandwidth $\geq 10\%$

<u>SOA:</u>

- WFIRST: Raw contrast: few x 10⁻⁹ (obscured); 3x10⁻¹⁰ (unobscured; Hybrid Lyot)
- IWA ~ 3 λ/D
- Bandwidth 10%

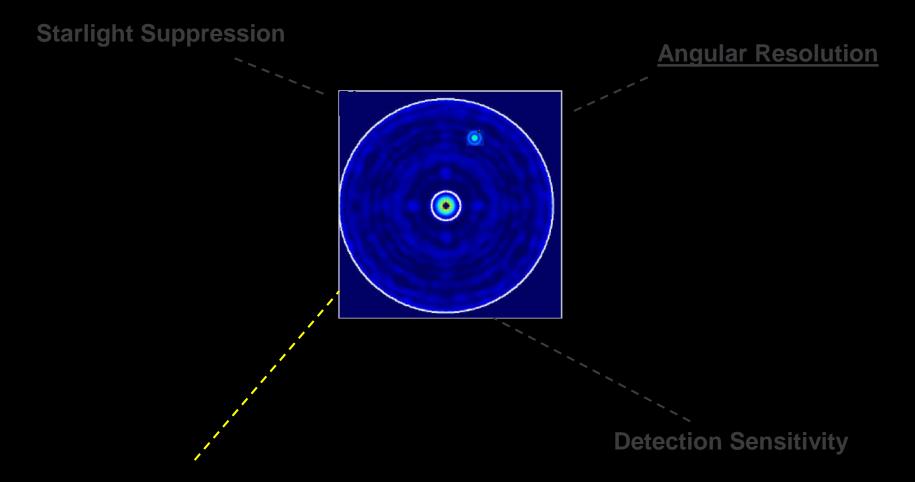
Current Activities:

- WFIRST coronagraphs planned to achieve TRL 5 by end FY16
- Additional demonstrations ongoing at STScl (APLC) and GSFC (VNC)
- ExEP planning FY16 design study to identify coronagraph architectures that can reach < 10⁻⁹ on large <u>segmented</u> apertures (FY16)
- Pre-Decadal mission concepts in FY16-18

Starlight Suppression

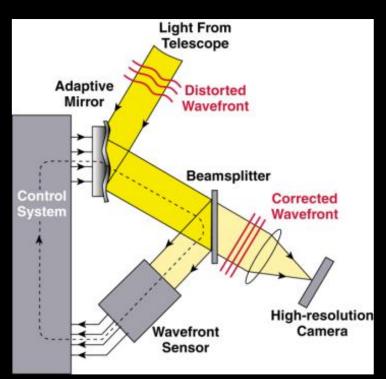
Deformable mirrors (Xinetics 48x48)

Need:


- \geq 96x96 actuators
- radiation and env't qualified
- flight electronics and connectors
- pitch sizes $\leq 1 \text{ mm}$
- stroke \geq 500 um

SOA:

- 64x64 electrostrictive actuators by Xinetics (WFIRST baselined 48x48)
- 3x10⁻¹⁰ contrast achieved with 32x32
- pitch size = 1 mm
- stroke = 500 um


Current Activities:

- 48x48 Xinetics DMs are being flight qualified, connector study, flight electronics design (WFIRST; FY16-17)
- MEMS DMs (BMC and Iris AO) env't testing (FY16-17)
- Pre-Decadal mission concepts in FY16-18

Wavefront Stability

Wavefront Stability

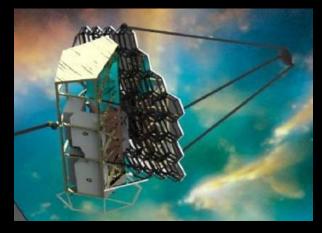
Low-order wavefront sensing and control

Needs:

- Low-order WFE terms sensed and corrected to maintain 10⁻¹¹ contrast stability
- < 10 pm rms uncorrected WFE

SOA:

- Zernike wavefront sensor baselined on WFIRST
 - ▶ 14 mas simulated jitter input (tip/tilt only) corrected to ≤ 0.5 mas rms residual


Current Activities:

- WFIRST LOWFS sensing first few modes to be demonstrated with a telescope and env't simulator with a coronagraph (FY16)
- Pre-Decadal mission concepts in FY16-18

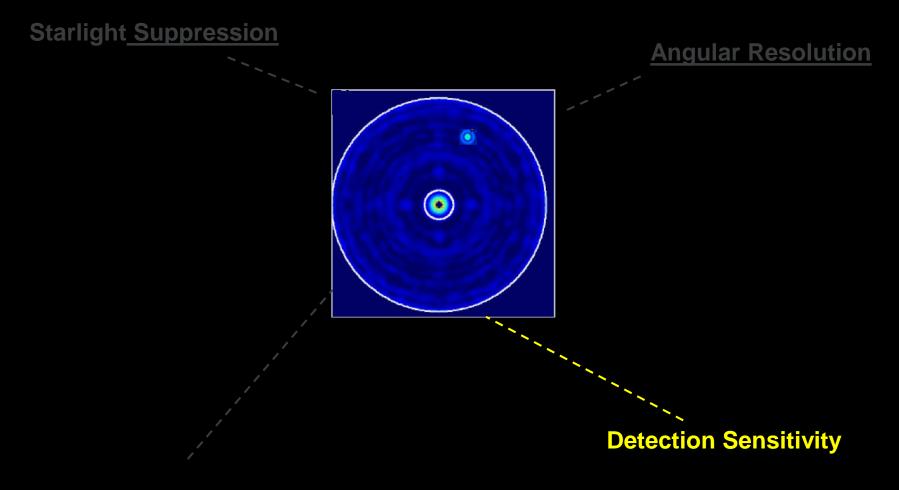
Wavefront Stability

Segment phasing and rigid body control

Telescope vibration control

Needs:

- Segment phasing control to < 10 pm rms
- Disturbance: 140 dB at > 40 Hz


Relative to SOA:

- WF stability 2-3 OOM better than HST
- 1-2 OOM segment phasing and rigid body control (non-NASA); 3 OOM JWST
- 1 OOM in vibration control (WFIRST)
- Disturbance: 80 dB at > 40 Hz (JWST; passive)

Current Activities

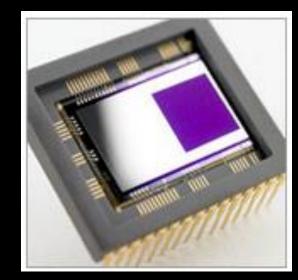
- Pre-Decadal mission concepts in FY16-18 to conduct key <u>systems</u> trade studies
 - segmented vs monolith primaries
 - active control vs passive vs hybrid for thermal, vibration, SFE

Note: can be relaxed to SOA for starshade

Wavefront Stability

Needs (Visible):

- 0.4 1 um ultra-low noise detectors
- Read noise: << 0.1 e'/pix
- Dark current: < 0.0001 e'/pix/s
- Format: > 2kx2k
- Radiation hard


Relative to SOA:

- 1kx1k EMCCD baselined for WFIRST
- OOM in RN and DC
- Not environmentally tested

Current Activities:

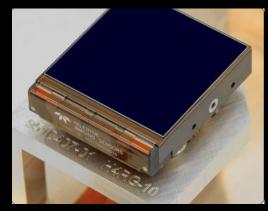
- Radiation testing (WFIRST; FY15-16)
- Flight R/O electronics design (WFIRST; FY16-18)
- Env't testing

Detection Sensitivity

e2V EMCCD 1kx1k

Needs (IR):

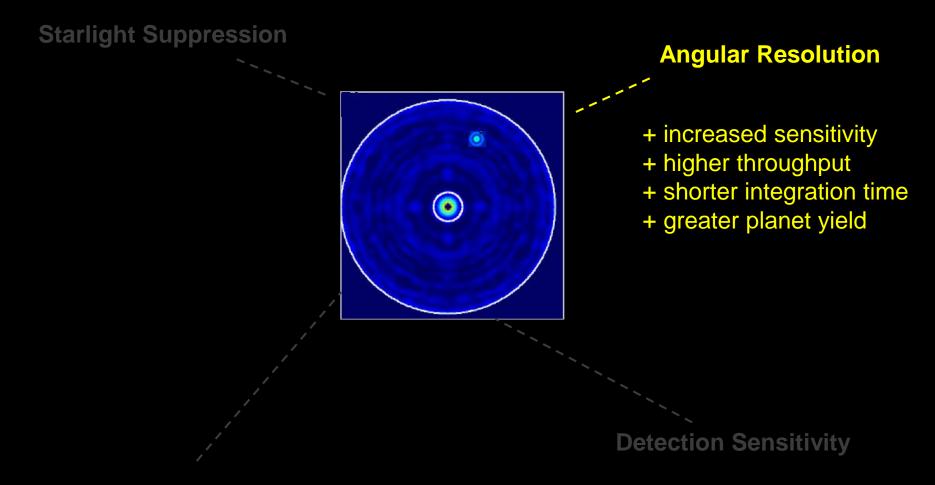
- 1-5 um
- Read noise: < 1 e'/pix
- Dark current: < 0.001 e'/pix/s
- Format: arrays of $\geq 2kx2k$
- Radiation hard
- Zero-vibration cooling


Relative to SOA:

- HgCdTe APD Hybrid
- Read noise: << 1 e'/pix
- Dark current: 10-20 e'/pix/s
- Format: arrays of < 1kx1k

Current Activities:

- HgCdTe (WFIRST) and APD noise reduction efforts
- MKIDS and TES are low-TRL cryo solutions
- Pre-Decadal mission concepts to determine long λ cutoff (FY16)


Detection Sensitivity

Teledyne H4RG-10 IR detector

Technology CD	350 — 950 nm	050	_	
CD	00001	950 nm — 5 µm	5 µm — 8 µm	
CD	Rad. hardness			
MOS				
	Rad. hardness			
-channel CCD				
i PIN Hybrid				
gCdTe Hybrid				
gCdTe APD Hybrid	Reduce dark current	Reduce dark current		
KID array	TRL < 5	TRL < 5	TRL < 5	
ES array	TRL < 5	TRL < 5	TRL < 5	
NSPD	Reduce dark current	Reduce dark current	Reduce dark current	
:As Hybrid				
	TRL ≥ 6; Sufficiently mature for pre Phase-A Promising technology, more work needed in specific area Promising technology Cryogenic cooling required May be worth looking into with additional optimization			
	channel CCD PIN Hybrid gCdTe Hybrid gCdTe APD Hybrid (ID array (S array ISPD As Hybrid	channel CCD PIN Hybrid gCdTe Hybrid gCdTe APD Hybrid KID array S array TRL < 5 S array TRL < 5 Reduce dark current As Hybrid TRL ≥ 6; Sufficiently Promising technolog Promising technolog Cryogenic cooling re	channel CCD PIN Hybrid pCdTe Hybrid Reduce dark current gCdTe APD Hybrid Reduce dark current KID array TRL < 5	

Rausch et al 2015 (SPIE)

Wavefront Stability

<u>Needs:</u>

- \geq 4m monoliths and \geq 8m segmented mirrors
- SFE < 10 nm RMS
- Active thermal control; likely figure control for segments

SOA:

- Monolith: HST's 2.4m (~ 10 rms SFE)
- Segmented: JWST's 6.5m (18 segments, 1.3m)
- SFE: < 30 nm RMS

Current Activities:

- Non-NASA investments
- Pre-Decadal mission concepts will study monolith vs segments, materials, active figure control

Segmented AHM SiC-based Segment, Xinetics

Angular Resolution

Large monolith (Gemini 8.1m ULE)

Segmented (AMSD lightweighted ULE Segment; ITT)

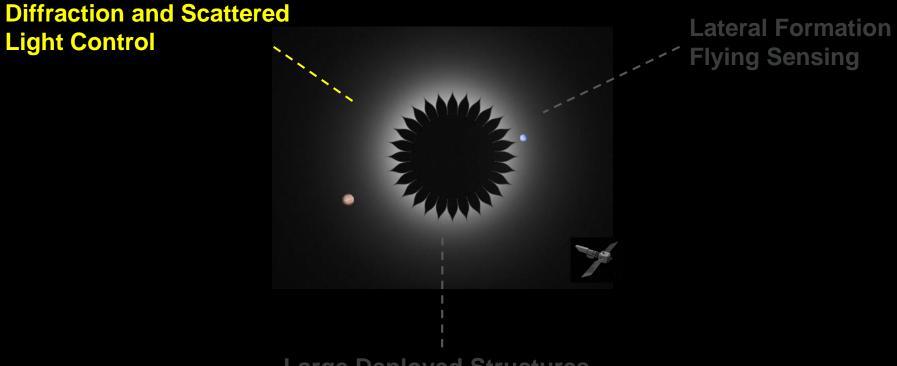
What's not hard...

Spacecraft Bus

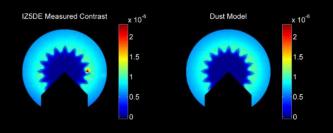
Space Telescope

Payload Optics

Diffraction and Scattered Light Control

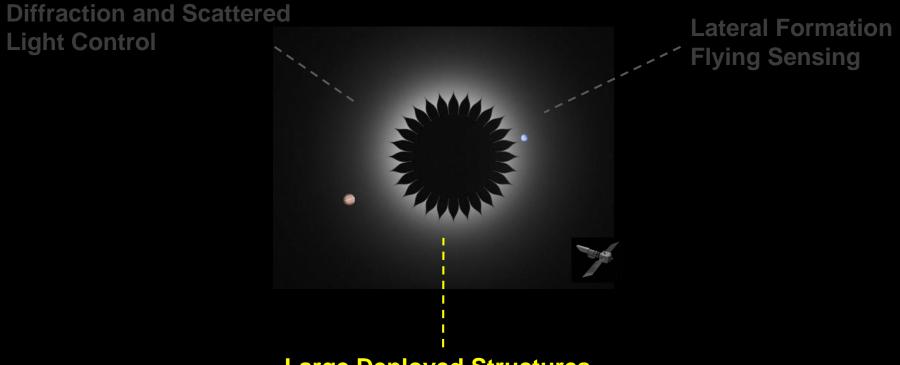

Lateral Formation Flying Sensing

Large Deployable Structures



Large Deployed Structures

Diffraction and Scattered Light Control



Needs:

- Contrast ≤ 10⁻¹⁰ demonstrated near the petal edges at a flight Fresnel number
- Optical model validation
- Optical edge material identified and integrated to a full-scale petal

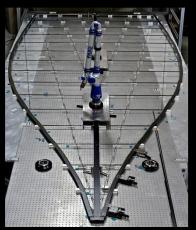
Current Activities:

- Optical performance and modeling studies (Princeton/JPL, NGAS, Colorado/JPL) – FY16-18
- Optical edge studies (NGAS, JPL) – FY16-17

Large Deployed Structures


Large Deployable Structures

Half-scale inner disk testbed (JPL)



1/10-scale opaque membrane testbed (JPL)

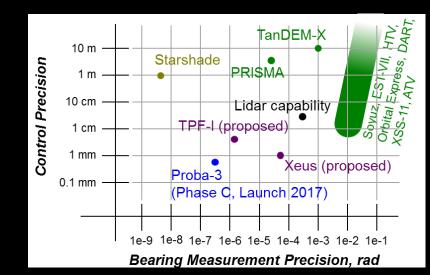
Petal unfurling concept (Roccor)

6m petal (Princeton/JPL)

Needs:

- Full-scale (~ 7m) petal with flight-like materials that meet manufacturing tolerances (< 70 um).
 FY16-17 (Princeton/JPL)
- Half-scale (10m) inner disk prototype with flight-like components and opaque membrane that meets deployment tolerances (< 0.45 mm).
 FY16-17 (JPL)
- Full-scale petal latching and unfurling mechanism verifying no edge contact during launch and petal unfurling
 FY16-18 (Roccor/JPL)
- 80m-class starshades designs? (TBD)

Diffraction and Scattered Lateral Formation Light Control Flying Sensing


Large Deployed Structures

Needs:

- Sense relative lateral offsets between telescope and starshade to within ± 20 cm at 50,000 km distance
 - Measure bearing angle to within ± 1.25 mas

Current Activities:

- Demonstrating mas bearing sensitivity with feedback control in scaled testbeds
 - Princeton/JPL, Colorado (FY16-17)

Lateral Formation Flying Sensing

30,000 to

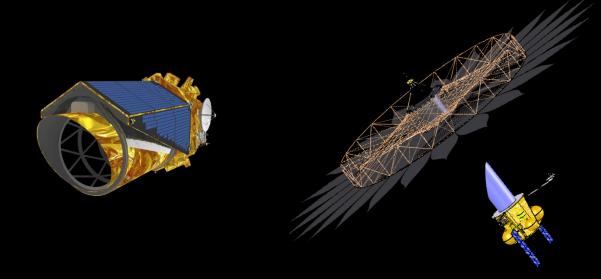
50,000 km

1m

lateral

Opportunities to Participate

- Engage with the ExoPAG (Program Analysis Group) the exoplanet community group (http://exep.jpl.nasa.gov/exopag/)
- Consider investing/collaborating your own internal R&D funding targeted to one of our technology needs
- Propose for a Small Business Innovation Research (SBIR) grant
 - All ExEP technology gaps are mapped to the 2015 NASA Technology Roadmaps
 http://www.nasa.gov/offices/oct/home/roadmaps/index.html
- Propose for a Technology Development for Exoplanet Missions (TDEM)
 - TRL 3-5 (http://nspires.nasaprs.com/external/)
- Propose for an Astrophysics Research and Analysis (APRA) grant
 - TRL 1-2 (http://nspires.nasaprs.com/external/)
- Visit the Exoplanet Exploration Program (ExEP) website
 - http://exep.jpl.nasa.gov/
- Contact me directly: nsiegler@jpl.nasa.gov


Further Reading

- P. R. Lawson, N. Siegler, B. Lim. "Exoplanet Exploration Program Technology Plan Appendix: 2015," Jet Propulsion Laboratory, http://exep.jpl.nasa.gov/technology/
- Exo-S Final Probe Study Report (best systems report on a potential starshade mission); http://exep.jpl.nasa.gov/STDT
- Exo-C Final Probe Study Report (recent probe-class study on an offaxis 1.4m monolith with a coronagraph); http://exep.jpl.nasa.gov/STDT
- Bolcar et al. 2015 (SPIE; good overview of the technology needs for a LUVOIR mission concept)
- Morgan & Siegler 2015 (SPIE; overview of the coronagraph technology needs for an exo-earth imaging mission)
- W. A. Traub and B. R. Oppenheimer, "Direct Imaging of Exoplanets," in Exoplanets, S. Seager ed. (University of Arizona Press: Tucson AZ, 2010) (good technical paper on the challenges of imaging exo-earths)

Acknowledgements

This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration

© Copyright California Institute of Technology Government sponsorship acknowledged

