

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

NASA's Exoplanet Program Technology Needs

Peter Lawson Program Chief Technologist NASA Exoplanet Exploration Program

Jet Propulsion Laboratory California Institute of Technology Pasadena, California, 91109 USA

Mirror Technology/SBIR/STTR Workshop Redondo Beach, CA, 1–4 October 2013

© 2013 California Institute of Technology. Government sponsorship acknowledged

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Combined-light methods not covered in this talk

- Combined-light methods
 - Radial velocity
 - Transit
 - Microlensing
 - Pulsar timing
 - Astrometry

These techniques do not resolve the planet as separate from the star: telescopes used as "light buckets"

- Starlight suppression methods
 - Coronagraph
 - Starshades
 - Interferometer

Planets resolved as separate objects.

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

System Requirements

Angular Resolution Contrast Inner Working Angle

1 October 2013

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Angular Resolution: Some numbers to keep in mind

- A 50-cm space telescope equipped with a coronagraph is capable of characterizing the debris disks around ~1 nearby star (epsilon Eridani).
- A 1.5-m space telescope would enable compelling exoplanet science to study planets larger than the Earth Jupiter and Saturn type planets.
- A space telescope 4-m or more in diameter is needed to survey and detect a reasonable sample of nearby Earth-like planets
- To image the surface of a planet around a nearby star we would need a telescope ~30 km in diameter.

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Contrast: The Spectrum of an Earth-like Exoplanet

At mid-infrared wavelengths, exoplanets shine because they are warm At visible wavelengths, exoplanets shine in reflected starlight

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Imaging Discovery Space

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Why is a Space Mission Needed?

Wavefront Errors Ground-based vs Space-based Imaging

Jet Propulsion Laboratory California Institute of Technology Pasadena, California New Ground-based Exoplanet Instruments 2012-2020

Extreme AO on 8–10-m class telescopes

Extreme AO on Extremely Large Telescopes (30-42m diameter)

Thirty Meter Telescope

European Extremely Large Telescope

Giant Magellan Telescope

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Discovery Space of Existing and Near-term Ground-based Coronagraphs

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Discovery Space of Extremely Large Telescopes

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Coronagraph Technology Challenges

Diffraction Control Speckle Suppression

1 October 2013

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Step 1: Diffraction control used to selectively reject starlight

- A diffractive optic is used to remove star-light from the field of view, while allowing the planet light to be detected
 - A fixed optic (does not move)
 - e.g. an image plane mask in a coronagraph, or the occulter of an external coronagraph
 - Mathematically may have perfect performance
 - In practice may have subtle imperfections
- Concepts in Fourier Optics provide a wide variety of possible solutions

Sivaramakrishnan et al. ApJ 552, 397 (2001)

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Selected Coronagraph Concepts

Image Plane Amplitude & Phase Mask (Trauger, JPL)

Image Plane Phase Mask (Serabyn, JPL)

Pupil Shearing (Clampin, NASA GSFC)

Pupil Masking (Vanderbei, Univ. Princeton)

Pupil Mapping (Guyon, Univ. Arizona)

Jet Propulsion Laboratory California Institute of Technology Pasadena, California Step 2: Speckle suppression compensates for imperfections in Mask and/or Telescope System

- Wavefront compensation is required, with tolerances set by the desired planet/star contrast
 - Two deformable mirrors are needed for simultaneous phase & amplitude correction over a full field
 - The Talbot effect causes phase errors to give rise to amplitude errors
- Modulation of the wavefront is used to measure and suppress speckles
 - Deformable mirrors are modulated to detect coherent speckles
 - Angular Differential Imaging and Spectral Deconvolution are other forms of modulation that can be used to improve sensitivity in post-processing

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Deformable Mirrors

- Xinetics (NGAS) deformable mirrors have been used to demonstrate contrasts of 2 x 10⁻¹⁰
 - Routinely used in vacuum at HCIT
 - Vibration tested at JPL
- Boston Micromachines (MEMS) deformable mirrors demonstrated contrasts of 10⁻⁸
 - Low-power, low mass
 - Flown on PICTURE (Chakrabarti, Boston University)

48x48 Xinetics DM vibration tested at JPL

DMs have not yet been flown but are at a high TRL Further advances in MEMS DM technology are of great interest

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Telescope Engineering Requirements vs λ/D

Laser metrology required for sensing and control

Key requirements 1–2 orders of magnitude tighter for a 3.8-m telescope operating at $2\lambda/D$

S. B. Shaklan, L. Marchan, J. J. Green, O. P. Lay, "Terrestrial Planet Finder Coronagraph Dynamics Error Budget," Proc. SPIE 5905 (2005).

S. B. Shaklan, L. F. Marchan, J. E. Krist, M. Rud, "Stability error budget for an aggressive coronagraph on a 3.8-m telescope," Proc. SPIE 8151, San Diego, August 2011.

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Coronagraph Laboratory Results

Method	Design	Facility	λ	$\Delta\lambda$	Mean Raw	r_{min}	r_{max}	$\Delta \phi$	Hole	Field	Throughput
			(nm)	(%)	Contrast	(λ/D)	(λ/D)	(deg)	Shape	$(\lambda/D)^2$	(%)
BLHL	4^{th} order	HCIT	800	2	1.2e-10	3.1	15.6	180	D	283.8	56
BLHL	4^{th} order	HCIT	800	10	3.2e-10	3.1	15.6	180	D	283.8	56
BLHL	4^{th} order	HCIT	800	20	1.3e-09	3.1	15.5	180	D	285.6	56
PIAA	Prolate	ACE	650	0	4.4e-07	1.2	2.0	140	Arc	3.1	46
PIAA	Prolate	HCIT-2	808	0	$5.7e{-}10$	1.9	4.7	180	Rect	12.7	46
PIAA	Prolate	HCIT-2	800	10	1.8e-08	2.2	4.6	180	Rect	9.9	46
\mathbf{SPC}	Ripple 3	HCIT	800	2	1.2e-09	4.5	13.8	82	Wedge	80.9	10
\mathbf{SPC}	Ripple 3	HCIT	800	10	2.5e-09	4.5	13.8	82	Wedge	80.9	10
\mathbf{VNC}	$\epsilon = 0.25$	GSFC	633	2	5.3e-09	1.5	2.5	28	Arc	1.0	35
VV	TC4	HCIT	785	0	3.6e-09	2.6	12.2	180	D	173.8	36
VV	TC4	HCIT	800	2	1.7e-08	2.4	9.9	180	Rect.	65.9	43
$\mathbf{V}\mathbf{V}$	TC4	HCIT	800	10	2.9e-08	2.4	9.4	180	Rect.	59.8	43
VV	TC4	HCIT	800	20	4.3e-08	2.4	9.1	180	Rect.	55.4	43

Table 1: Coronagraph Laboratory Results

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

State-of-the-Art in Coronagraph Laboratory Experiments with a 10% bandwidth

1 October 2013

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

A Coronagraph for an Astrophysics Focused Telescope Asset (AFTA)

The central obscuration and struts make the design of a coronagraph challenging.

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Starshade Technology Challenges

Diffraction Control Formation Flying

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Starshade principle of operation

1 October 2013

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Diffraction control used to shade starlight from the telescope

- Occulter casts a deep shadow on the telescope
 - Starshade is several times larger in diameter than the telescope primary
 - Has a perimeter that diffracts starlight tangentially (thus the petals)
 - Is located far enough away to provide the required inner working angle
 - Formation flying is used to orient and position telescope wrt occulter
- The error budget is concerned only with the profile and orientation of the starshade with respect to the telescope not the telescope itself
 - The error budget terms are measurable in fractions of millimeters, not fractions of nanometers
- Several different deployment strategies are being studie.

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Deployment Concept for Starshade

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Starshade Development N. J. Kasdin (Princeton University)

Precision edge Machining

Model validation

Starshade deployment demonstration

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

State-of-the-Art in Starshade Experiments with a 50% bandwidth

1 October 2013

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Summary and Perspective

1 October 2013

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Discovery Space of a Flagship Mission

1 October 2013

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Further Reading

- W. A. Traub and B. R. Oppenheimer, "Direct Imaging of Exoplanets," in Exoplanets, S. Seager ed. (University of Arizona Press: Tucson AZ, 2010)
- B. R. Oppenheimer and S. Hinkley, "High-contrast observations in optical and infrared astronomy," Ann. Rev. Astron. Astrop. 47, 253–289 (2009).
- P. R. Lawson, ed. "Exoplanet Exploration Program Technology Plan Appendix: 2012," Jet Propulsion Laboratory, JPL Doc 77698
 - http://exep.jpl.nasa.gov/technology/

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Acknowledgements

This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration

© Copyright California Institute of Technology Government sponsorship acknowledged

