

Mirror Technologies for NASA Astrophysics Missions

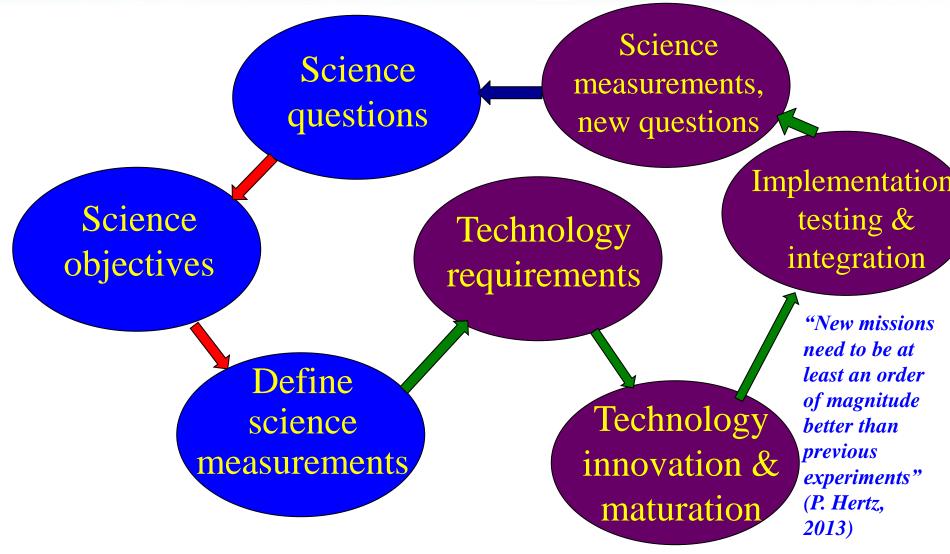
Mario R. Perez (NASA - HQ) – Cosmic Origins Program Scientist Susan G. Neff (NASA – GSFC) – Cosmic Origins Chief Scientist

Albuquerque, November 18, 2014

Why Astrophysics?

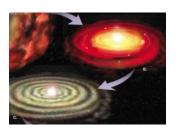
- Astrophysics is a photon starved discipline, demanding high performance from all systems and subsystems utilized for on-sky observations and detections.
- Most of the low-hanging fruit science goals, including synoptic astronomical observations have been explored and exploited.
- New science efforts and techniques such as persistent time domain observations, high contrast imaging, diffraction limited mapping, high spatial and spectral resolution data, and wide field surveys will open up new discovery spaces with important breakthroughs.
- New wavelength regimes and major gains in sensitivity also lead to significant new discoveries

Why Technology?



- The next level of detection in astrophysics will only be achieved with better and disruptive technology solutions.
 - Our main stumbling block is NOT a scientific one; we have enough compelling scientific questions, mission concepts, theory and simulations predictions, data pipelines and science archives.
 - Technology roadmaps will continue to identify important subsystems, techniques and materials needed to advance our science understanding.
 - Optical science improvements are possible and are key in the detection of the origins of the Universe and in the search for life.
 - New advances in material sciences, mirror design, fabrication, polishing, and metrology will enable future missions to achieve the next level of detection.

Science Flow and Mapping



Astrophysics Science Themes

 The organization of NASA's Astrophysics Division includes three science themes or program areas:

How did we get here? → Cosmic Origins Program (COR) – **GSFC Program Office**

Are we alone? → Exoplanet Exploration Program (EXEP)– JPL Program Office

How does the universe work? → Physics of the Cosmos (PCOS) – GSFC Program Office

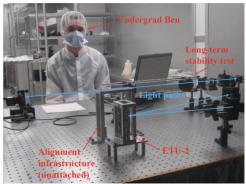
Strategic Astrophysics Technology (SAT)

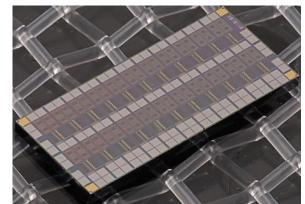
- Introduced in 2009, the Strategic Astrophysics
 Technology (SAT) Program was established to support
 the maturation of mid-range Technology Readiness Level
 (TRL) technologies developed and tested in the laboratory
 (TRL ≤ 3) to a point where they can be incorporated into
 flight missions with an acceptable level of risk (TRL ~ 5-6).
- Similarly, the SAT program is organized into 3 elements, one for each of the Division's science themes:
 - Technology Development for the Cosmic Origins Program (TCOR).
 - Technology Development for Exoplanet Missions (TDEM)
 - Technology Development for the Physics of the Cosmos Program (TPCOS)

Strategic Astrophysics Technology (SAT)

Areas of emphasis:

- TDEM
 - Starlight Suppression Demonstrations
 - Wavefront Sensing and Control of Scattered Light
 - System Performance Assessment




- Technologies for X-ray Astrophysics
- Technologies for Gravitational Astrophysics
- Technologies for CMB Polarization
 Measurements

TCOR

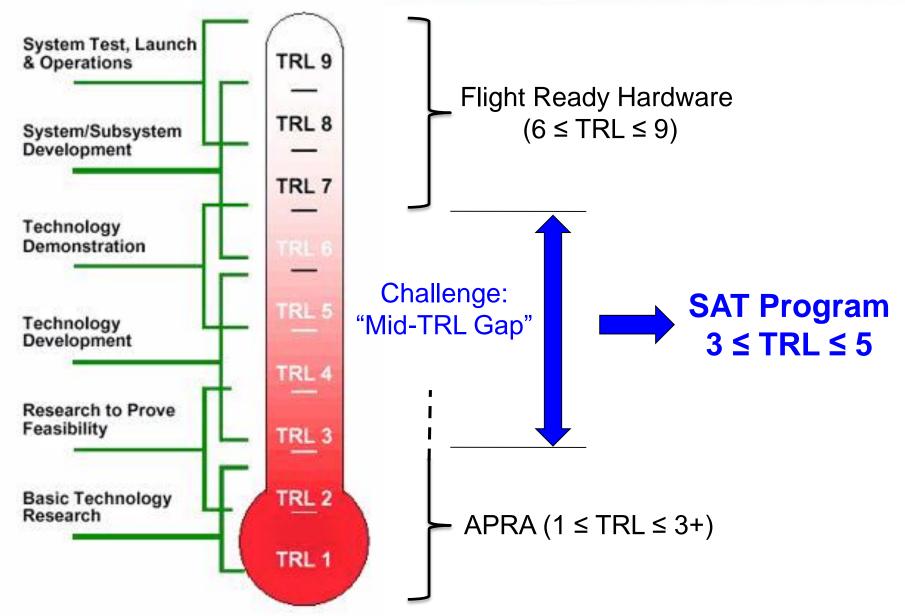
- Next Generation Detectors
- Optical Coatings
- Precision Large Optics

Technology Areas and Steps

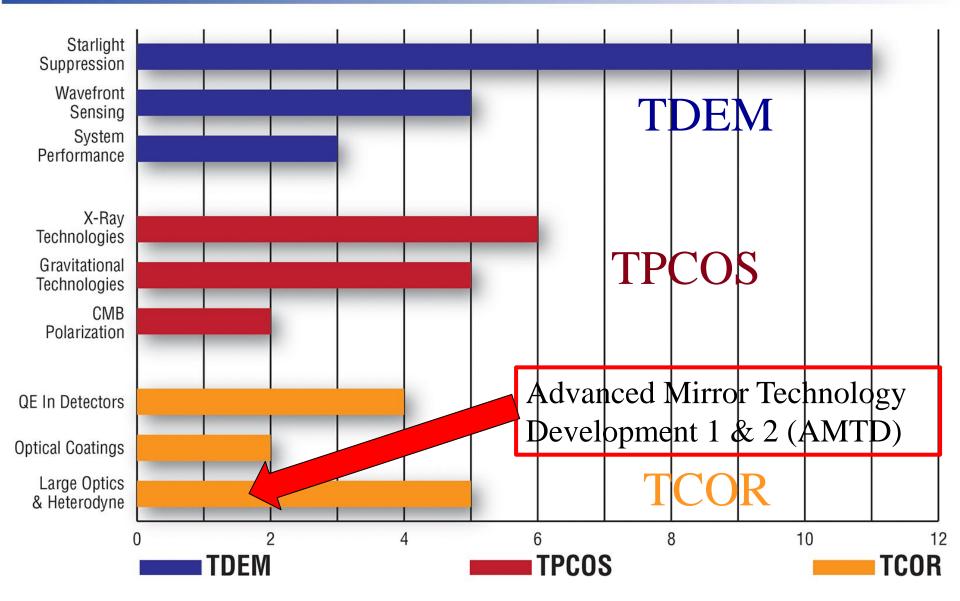
Technology innovation and readiness!

(discovery) (implementation)

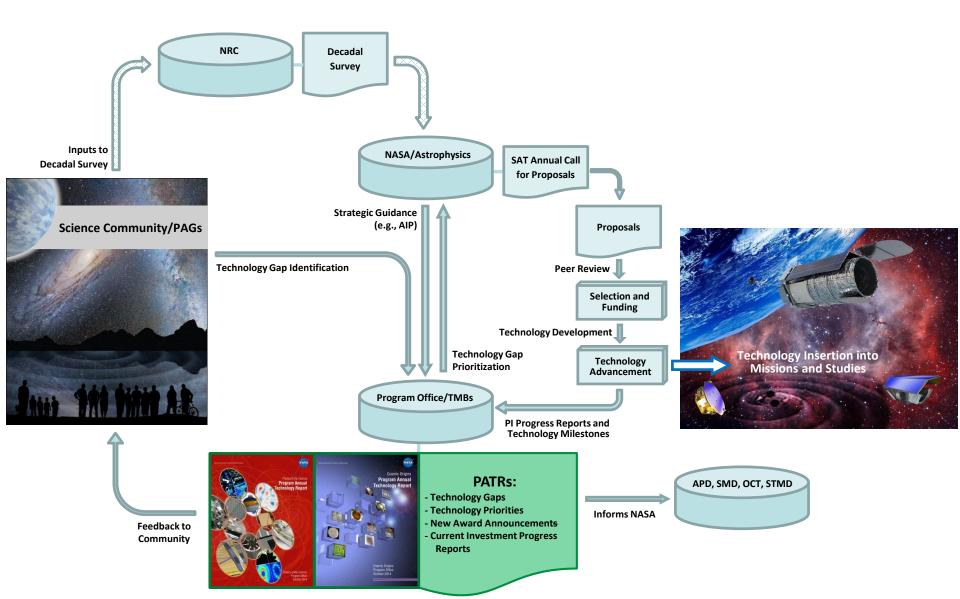
(inception) (maturation)


- Optics (high contrast imaging, lightweight mirrors deployable mirrors, large collecting areas, perfect wavefront corrections)
- Electronics (high QE of detectors, low noise readouts, large format detectors, superconductors)
- Material sciences (coatings, lightweight structures, actuators, strong materials)

Technology Readiness Levels

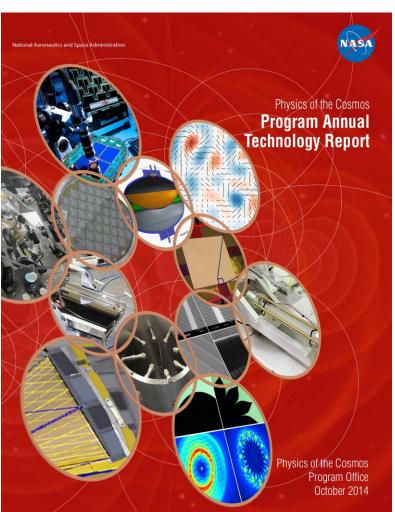

10

SAT Selected Proposals in Themes

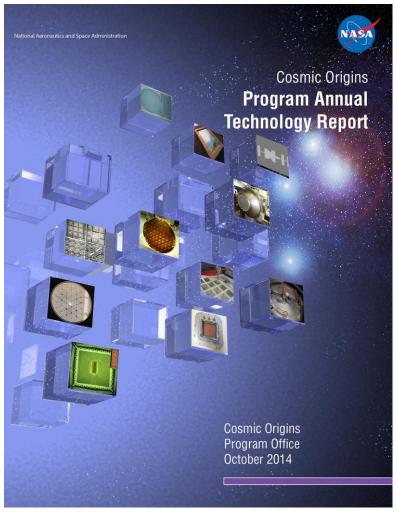


Astrophysics Division Program Technology Management

12



Program Annual Technology Reports



13

PCOS

COR

Additional information about the PCOS and COR technology development programs can be found in the PATRs which can be downloaded from their respective websites: http://pcos.gsfc.nasa.gov and http://pcos.gsfc.nasa.gov and http://pcos.gsfc.nasa.gov

November 18, 2014 NASA SBIR Mirror Tech Days

ExEP Technology Plan Appendix

JPL Document D-81562

TDEM

Exoplanet Exploration Program Technology Plan

Appendix: 2013

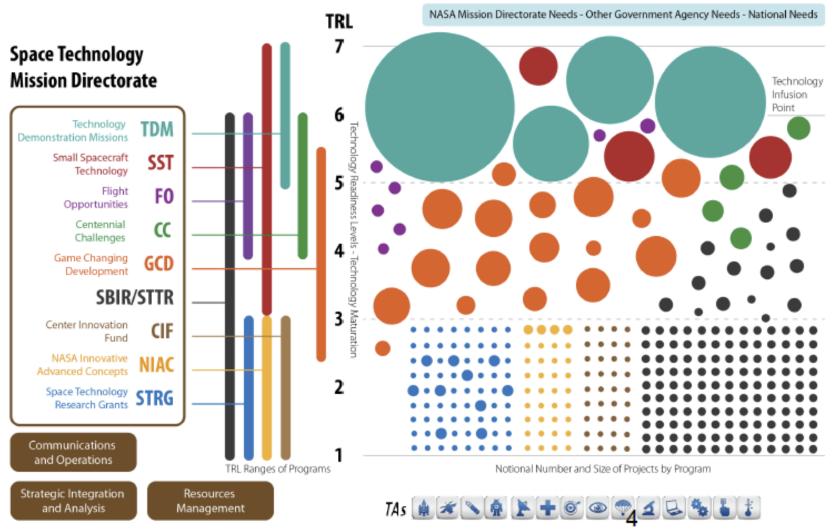
P. R. Lawson

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

21 January 2014

The Exoplanet Exploration Program issues an annual appendix to the Program's Technology Plan. The appendix updates ongoing technology development efforts supported by the program as well as technology gaps and programmatic priorities. The latest technology plan appendix can be downloaded at:


http://exep.jpl.nasa.gov/technology/.

The next edition of the appendix is expected to be released by mid-January. Prospective SAT/TDEM proposers are strongly encouraged to review the appendix before preparing their proposals.

Space Technology Portfolio

Space Technology Mission Directorate Contributes to Astrophysics

Space Technology Mission Directorate

*FY13 budget; STMD supports other Science Divisions & HEOMD.

NIAC Center Innovation Fund Space Tech Res Grants

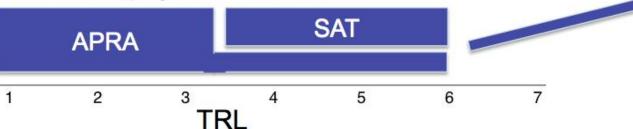
\$45M*

Small Business Innovative Research (SBIR)/ Small Business Technology Transfer (STTR)

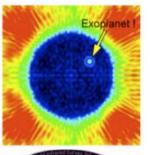
\$165M*

Game Changing Development

\$151M*


Small Spacecraft

\$15M*


Tech Demo Missions

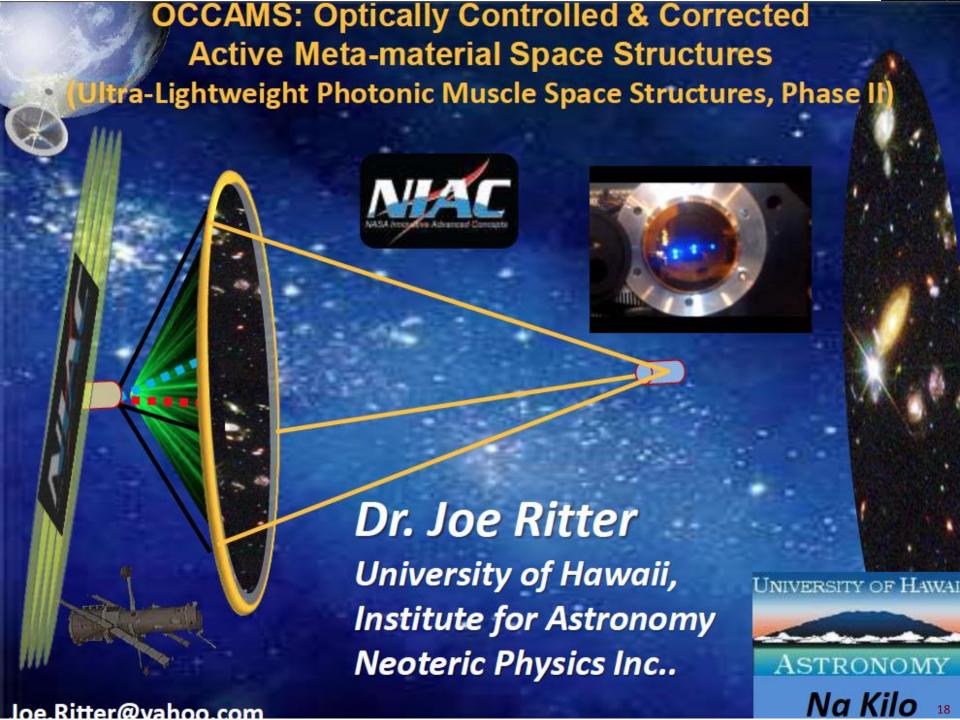
\$184M*

SMD Astrophysics Division

STMD Early Stage Innovation (ESI)

17

2014 ESI Topic 3: Optical Coatings and Thin-film physics


(UV & Far-IR coatings)

 $1 \leq TRL \leq 3$

Proposals: 11

Selected: 2 (\$250K/year/grant)

Announced: 25 Sept 2013

Past Space Missions

19

Retired Space-based COR Mission Mirrors

Telescope	Size (m)	Material	Type	No.	Wavelength	Coating
				Elem.	Range	
Herschel	3.5	SiC	Monolithic	-	57 – 670m	Al
Planck	1.5 x 1.9	C-fiber+plastic	Monolithic	-	0.3 – 11mm	Al
GALEX	0.5	Fused silica	Monolithic	-	1340-2830Å	Al:MgF2
FUSE	4 x 0.39	Zerodur,	Multiple	4	905-1187Å	SiC,
	x 0.35	lightweight	Monolithic			<u> Al:LiE</u>
HUT	0.9	Zerodur	Monolithic	-	825 -1850Å	Ir/Qs/SiC
WISE	0.4	Al	Monolithic	-	3-12m	Au
ISO	0.6	Fused silica	Monolithic	-	2.4-240m	Au
AKARI	0.7	SiC + CVD	Monolithic	-	2-180m	Au, ZnS
COBE/DIRBE	0.2	Aluminum	Monolithic	-	1.25-240m	Ni + Au
IRAS	0.6	Beryllium	Monolithic	-	8-120m	Al

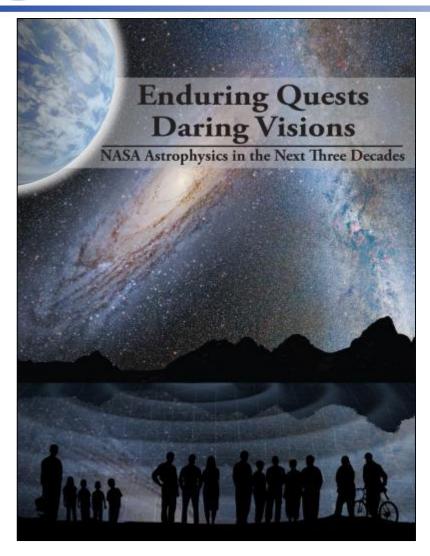
Current and Future Missions

20

Current Space-based COR/ExEP Mission Mirrors

Telescope	Size (m)	Material	Type	No. Elem.	Wavelength Range	Coating
Kepler	1.3	ULE Glass	Monolithic	-	4000-8650Å	Ag
Hubble	2.4	ULE Glass, fused Si, honeycomb	Monolithic	-	1150Å – 2.5m	Al:MgF2
Spitzer	0.85	Be	Monolithic	-	3 – 180m	Al
SOFIA	2.7	Zerodur	Monolithic	-	0.3 - 655m	Al
Swift UVO	0.3	Zerodur	Monolithic	-	1700-6000Å	MgF2

Future Space-based COR Mission Mirrors


Telescope	Size (m)	Material	Туре	No. Elem.	Wavelength Range	Coating		
JWST	6.5	Beryllium	Segmented	18	0.6-18m	Au		
WFIRST	2.4	ULE glass, lightweighted	Monolithic	-	0.4-10m	?		
Euclid	1.2	SiC or Zerodur	Monolithic	-	0.55-2m	?		
SPICA	3.5	SiC	Monolithic	-	30-200m	?		
	Sub-Orbital Payloads							
Rockets	0.55	Glass	Monolithic	-	Varies	Varies		
Balloons	0.5-1.0	Glass	Monolithic	-	Varies	Varies		

Astrophysics Roadmap

21

http://science.nasa.gov/astrophysics/documents

- A 30 year vision to address the enduring questions:
 - o Are we alone?
 - o How did we get here?
 - O How does the universe work?

November 18, 2014 NASA SBIR Mirror Tech Days

Technology Needs

Formative Era Missions

	Formative Fra					
	GW Surveyor	CMB-po Surveyo	FIR Surveyor	LUVOIR Surveyor	X-ray Surveyor	
Formation flying						
Interferometry: precision metrology						
X-ray interferometry						
High-contrast imaging techniques						
Optics deployment and assembly						
Broadband coatings						
X-ray optics						
Large-format detector arrays						
New detector capabilities						
Cryogenics						
	Essential Goals					
	Beneficial Goals					

Mirrors for Future NASA Missions

23

- Missions at NASA respond to science needs, not to technological capabilities or availabilities.
 - Important to trace science questions to scientific measurements and then to technology requirements.
- Technology readiness is one of the major obstacles for future advancements.
- Optical materials for the mirrors of the Far-IR and UVOIR Surveyors are *likely to be invented* in the upcoming years.
- The Suborbital program (Balloons and Sounding Rockets) is a good stepping stone to develop expertise and capabilities. This program has tolerance for high-risk experiments.

How Can You Help?

24

- Everyone is welcome to compete for research, innovations and maturation grants to APRA, SAT (Astrophysics) and STMD (Technology Directorate)[Next deadline is March 20, 2015]
- Become an institutional resource:
 - Volunteer for technology peer review panels
 - Technical consultants (solicitations, roadmaps, feasibility studies)
 - Join STDTs for next Decadal mission concepts
- Become a partner in mission concepts and in mission proposals [Suborbital, CubeSats, ISS, SMEX, MIDEX,....]
- Create a facility or laboratory that is unique and needed within the agency (business development investment)

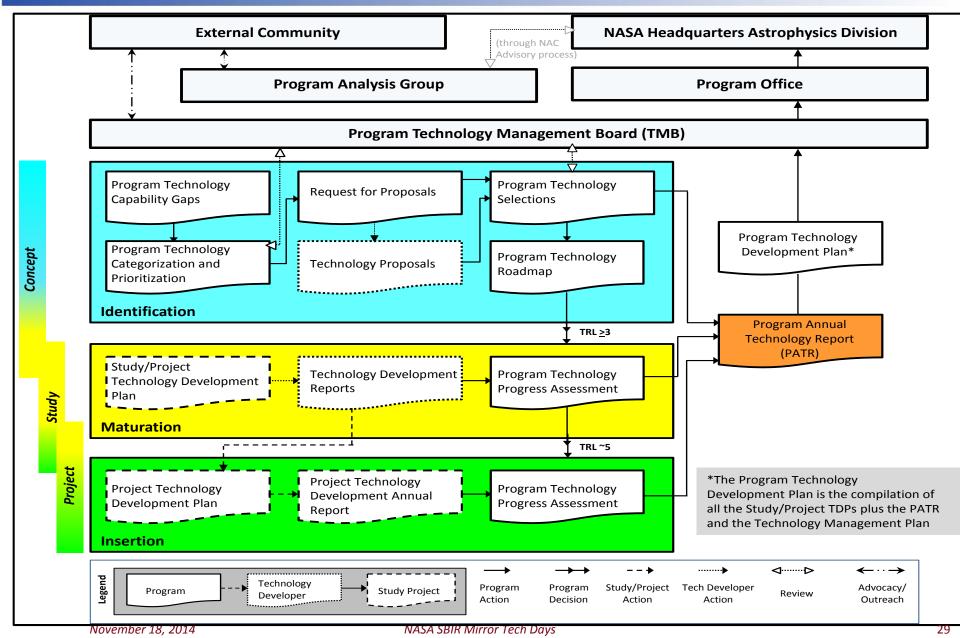
SAT/TCOR Portfolio

Funding	Technology Development Title	PI	Institution	Start Year and Duration	Area
SAT2010	Advanced UVOIR Mirror Technology Development for Very Large Space Telescope	P. Stahl	MSFC	FY12, 3 years	Optics
SAT2010	High Performance Cross-Strip Micro-Channel Plate Detector Systems for Spaceflight Experiments	J. Vallerga	UC Berkeley	FY12, 3 years	UV Detectors
SAT2010	Enhanced MgF2 and LiF Overcoated Aluminum Mirrors for FUV Space Astronomy	M. Quijada	GSFC	FY12, 3 years	UV Coatings
SAT2011	Ultraviolet Coatings, Materials and Processes for Advanced Telescope Optics	K. Balasubramanian	JPL	FY13, 3 years	UV Coatings
SAT2011	Kinetic Inductance Detector Imaging Arrays for Far-Infrared Astrophysics	J. Zmuidzinas	JPL	FY13, 2 years	Far-IR Detectors
SAT2011	Improvements of the Performance of Near-Infrared Detectors for NASA Astrophysics Missions: Reducing the Sub-1% Detector Effects	S. Anglin	Teledyne	FY13, 1 year	UVOIR Detectors
SAT2011	H4RG Near-IR Detector Array with 10 Micron Pixels for WFIRST and Space Astrophysics	B. Rauscher	GSFC	FY13, 1 year	UVOIR Detectors
SAT2011	High Efficiency Detectors in Photon Counting and Large Focal Plane Arrays for Astrophysics Missions	S. Nikzad	JPL	FY13, 3 years	UVOIR Detectors
SAT2012	Far-Infrared Heterodyne Array Receiver	I. Mehdi	JPL	FY14, 3 years	Far-IR Detector
SAT2012	Advanced Mirror Technology Development Phase 2	P. Stahl	MSFC	FY14, 3 years	Optics
SAT2012	Development of DMD Arrays for use in Future Space Missions	Z. Ninkov	RIT	FY14, 2 years	Optics

SAT/TDEM Portfolio

	Nontriodayuaroro			Start Year and		
Funding	Technology Development Title	PI	Institution	Duration	Area	
TDEM2009	Visible Nulling Coronagraph Technology Maturation: High Contrast Imaging & Characterization of Exoplanets	M. Clampin	NASA GSFC	FY10, 2 years	Starlight Suppression	
TDEM2009	A Photon-Counting Detector for Exoplanet Missions	D. Figer	Rochester Inst. of Tech.	FY10, 2 years	Detector Development	
TDEM2009	Phase-Induced Amplitude Apodization Coronagraphy Development and Laboratory Validation	O. Guyon	U. Arizona	FY10, 2 years	Starlight Suppression	
TDEM2009	Starshades for Exoplanet Imaging and Characterization: Key Technology Development	J. Kasdin	Princeton U.	FY10, 2 years	Starlight Suppression	
TDEM2009	Assessing the Performance Limits of Internal Coronagraphs Through End- To-End Modeling	J. Krist	JPL	FY10, 2 years	System Modeling	
TDEM2009	Advanced Speckle Sensing for Internal Coronagraphs and Methods of Isolating Exoplanets from Speckles	C. Noecker	Ball Aerospace	FY10, 2 years	Wavefront Sensing/Control	
TDEM2009	Advanced Hybrid Lyot Coronagraph Technology for Exoplanet Missions	J. Trauger	JPL	FY10, 2 years	Starlight Suppression	
SAT2010	Advances in Pupil Remapping (PIAA) Coronagraphy: Improving Bandwidth, Throughput and Inner Working Angle	O. Guyon	U. Arizona	FY12, 2 years	Starlight Suppression	
SAT2010	Verifying Deployment Tolerances of an External Occulter for Starlight Suppression	J. Kasdin	Princeton U.	FY12, 2 years	Starlight Suppression	
SAT2010	Compact Achromatic Visible Nulling Coronagraph Technology Maturation	R. Lyon	NASA GSFC	FY12, 2 years	Starlight Suppression	
SAT2010	Visible Nulling Coronagraph (VNC) Technology Demonstration Program	J. Sandhu	JPL	FY12, 2 years	Starlight Suppression	
SAT2010	Demonstrations of Deep Starlight Rejection with a Vortex Coronagraph	G. Serabyn	JPL	FY12, 2 years	Starlight Suppression	
SAT2010	Coronagraph Starlight Suppression Model Validation: Coronagraph Milestone #3a	S. Shaklan	JPL	FY12, 2 years	System Modeling	
SAT2010	Integrated Coronagraph Design and Wavefront Control Using Two Deformable Mirrors	J. Kasdin	Princeton U.	FY12, 2 years	Wavefront Sensing/Control	
SAT2010	Environmental Testing Of MEMS Deformable Mirrors for Exoplanet Detection	M. Helmbrecht	Iris AO, Inc.	FY12, 2 years	Wavefront Sensing/Control	
SAT2010	MEMS Deformable Mirror Technology Development for Space-Based Exoplanet Detection	P. Bierden	Boston Micromachines	FY12, 2 years	Wavefront Sensing/Control	
SAT2012	Starshade Stray Light Mitigation through Edge Scatter Modeling and Sharp- Edge Materials Development	S. Casement	Northrop Grumman	FY14, 2 years	System Modeling	
SAT2012	Demonstration of Starshade Starlight-Suppression Performance in the Field	T. Glassman	Northrop Grumman	FY14, 2 years	Starlight Suppression	
SAT2012	Optical and Mechanical Verification of an External Occulter for Starlight Suppression	J. Kasdin	Princeton U.	FY14, 2 years	Starlight Suppression	

SAT/TPCOS Portfolio


28

Funding	Technology Development Title	PI	Institution	Start Year and Duration	Area
SAT2010	Development of Fabrication Process for Critical-Angle X-ray Transmission Gratings	M. Schattenburg	MIT	FY12, 2 years	X-ray
SAT2010	Antenna-Coupled Superconducting Detectors for Cosmic Microwave Background Polarimetry	J. Bock	JPL	FY12, 2 years	СМВ
SAT2010	Directly-Deposited Blocking Filters for Imaging X-ray Detectors	M. Bautz	MIT	FY12, 2 years	X-ray
SAT2010	Off-plane Grating Arrays for Future Missions	R. McEntaffer	U of Iowa	FY12, 2 years	X-ray
SAT2010	Development of Moderate Angular Resolution Full Shell Electroplated Metal Grazing Incidence X-ray Optics	P. Reid	SAO	FY12, 2 years	X-ray
SAT2011	Next generation X-ray Optics: High Resolution, Light Weight, and Low Cost	W. Zhang	GSFC	FY13, 2 years	X-ray
SAT2011	Demonstrating Enabling Technologies for the High-Resolution Imaging Spectrometer of the Next NASA X-ray Astronomy Mission	C. Kilbourne	GSFC	FY13, 2 years	X-ray
SAT2011	Colloid Microthruster Propellant Feed System for Gravity Wave Astrophysics Missions	J. Ziemer	JPL	FY13, 2 years	GW
SAT2011	Telescope for a Space-based Gravitational Wave Mission	J. Livas	GSFC	FY13, 2 years	GW
SAT2011	Advanced Laser Frequency Stabilization Using Molecular Gasses ** (cofunded with STMD)	J. Lipa	Stanford	FY13, 2 years	GW
SAT2012	Antenna-Coupled Superconducting Detectors for Cosmic Microwave Background Polarimetry	J. Bock	JPL	FY14, 2 years	СМВ
SAT2012	Demonstration of a TRL 5 Laser System for eLISA	J. Camp	GSFC	FY14, 2 years	GW
SAT2012	Phase Measurement System Development for Interferometric GW Detectors	W. Klipstein	JPL	FY14, 2 years	GW

SAT Technology Management

Early SAT Successes and Future

- **TDEM** Starlight suppression technologies competed for the down select process in the internal coronagraph for WFIRST/AFTA (2014).
- **TCOR** NIR H4RG technology adopted as the detector to be matured for the Wide-Field Imager of WFIRST/AFTA (2014).
- **TPCOS** TES bolometer fielded in the BICEP2 experiment, which reported the detection of CMB B polarization (2014). Also, potential X-ray technologies funded by SAT could be part of the US contribution to the upcoming L2/X-ray ESA mission (2015+).

Next SAT solicitation (proposals due on 20 March 2015) will include all three themes. Available funding for competed SAT is planned to increase toward the second half of this decade.