

Ares V an Enabling Capability for Future Space Science Missions H. Philip Stahl, Ph.D. NASA MSFC

Executive Summary

Current Launch Vehicle Mass & Volume limits drive Mission Architecture & Performance:

Volume limits Aperture Asymmetric Aperture - TPF Deployable Segmented Telescope - LUVO Mass limits Areal Density Extreme Lightweighting - ConX And, drive Mission Implementation Cost & Risk

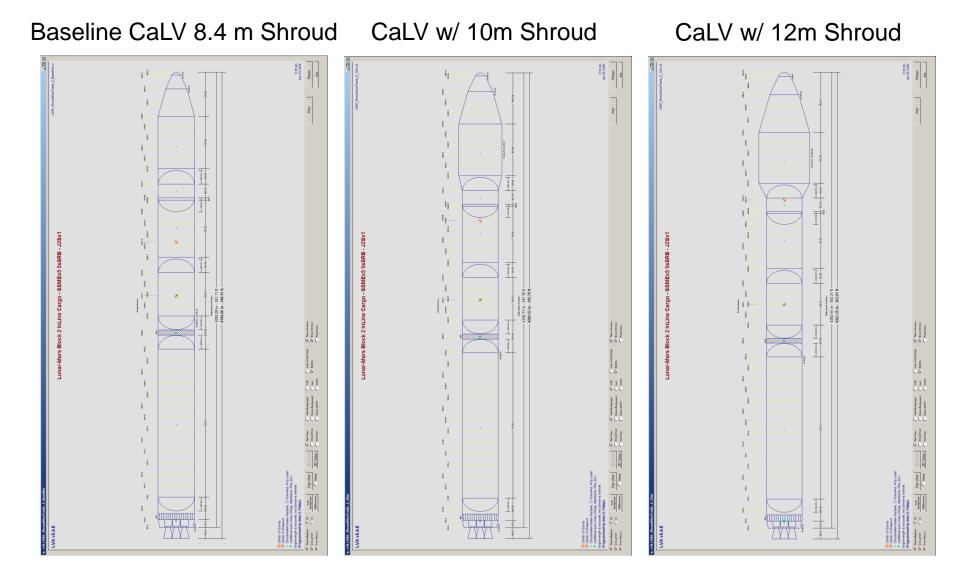
Ares V eliminates these constraints and enables an entirely new class of future mission architectures.

While Ares V is ~2018, <u>now</u> is time to start planning future missions such as 6-8 m monolithic observatory.

Sun Earth Moon

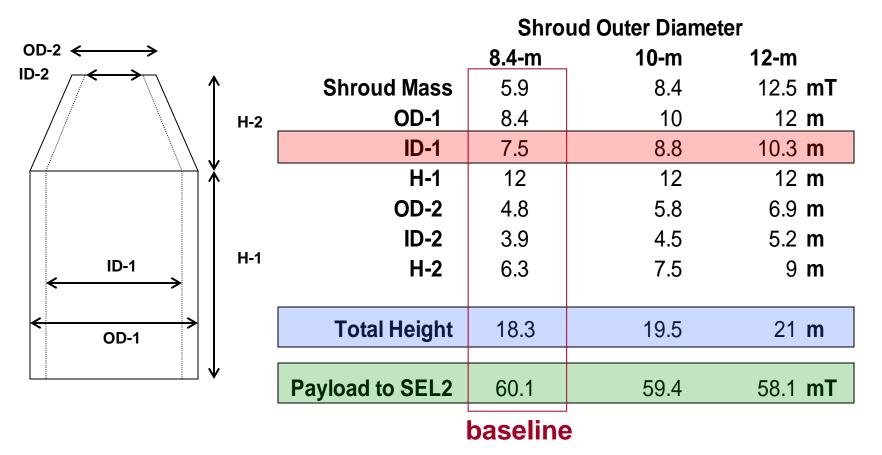
Delta IV can Deliver

23,000 kg to Low Earth Orbit 13,000 kg to GTO or L2 Orbit w/ phasing 5 meter Shroud


Ares V can Deliver

130,000 kg to Low Earth Orbit 60,000 kg to GTO or L2 Orbit w/ phasing 8.4 meter Shroud (slightly less with 12 meter Shroud)

1.5 M km from Earth


Ares V - Preliminary Shroud Concepts (from MSFC Ares V Office)

Ares V Preliminary Shroud Dimensions (from MSFC Ares V Office)

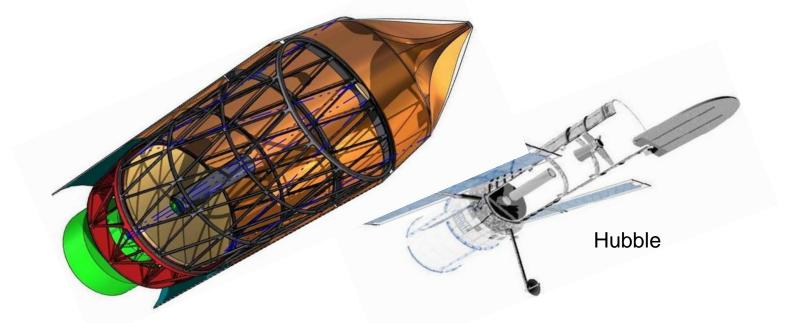
ID is the payload dynamic envelope, not the wall thickness.

NOTE: these shroud dimensions are preliminary, are subject to change, and have not been approved by the Ares project office.

Ares V Changes Paradigms

Ares V Mass & Volume enable entirely new Mission Architectures:

- 6 to 8 meter class Monolithic UV/Visible Observatory
- 5 meter cube (130,000 kg) Cosmic Ray Water Calorimeter
- 4 meter class X-Ray Observatory (XMM/Newton or Segmented)
- 15 to 18 meter class Far-IR/Sub-MM Observatory (JWST scale-up)
- 150 meter class Radio/Microwave/Terahertz Antenna
- Constellations of Formation Flying Spacecraft


All of these can be built with <u>Existing</u> Technology

Thus allowing NASA to concentrate its Technology Development Investments on Reducing Cost/Risk and Enhancing Science Return

To use a 2018 Launch, should start mission planning <u>now</u>

Case Study: 6 to 8 meter Class Monolithic Space Telescope

Enables Compelling High Priority Science: UV/Visible Science Terrestrial Planet Finding Science

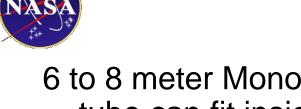
Science Enabled by a 6 to 8 meter Telescope

Dark Energy/Dark Matter

Missing Baryons Supernovae Baryonic Oscillation Weak Lensing

Galaxy & Star Formation

Reionization Star Formation Cooling of White Dwarfs

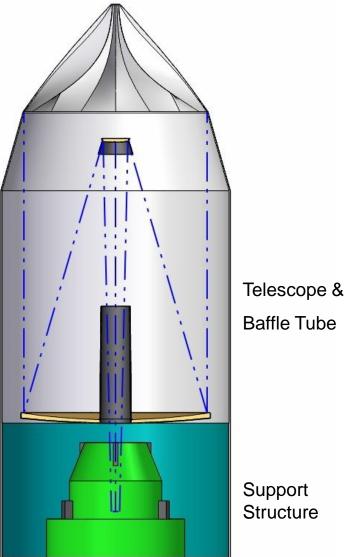

Extra-Solar Planets

Census of Planetary Systems Transiting Hot Jupiters UV Spectroscopy Wide Field Optical/IR Imaging Optical Grism Spectroscopy Wide Field Optical Imaging

Optical Grism Spectroscopy Wide Field UV/Optical Imaging Wide Field Optical Imaging

Wide Field UV/Optical/Near IR Imaging UV Spectroscopy

Design Concept


6 to 8 meter Monolithic Telescope & tube can fit inside Ares V envelop (8.4 to 12 meter shrouds).

Minimize Cost (& Risk) by using existing ground telescope mirror technology – optics & structure.

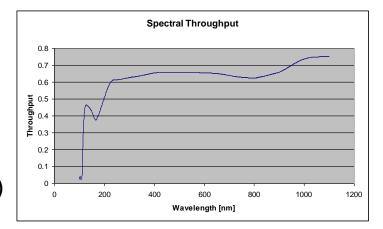
8-meter diameter is State of Art

7 existing: VLT, Gemini, Subaru 23,000 kg (6 m would be ~13,000 kg) ~\$20M (JWST PM cost ~\$100M) 7.8 nm rms surface figure (~TPF spec)

Expect similar savings for structure

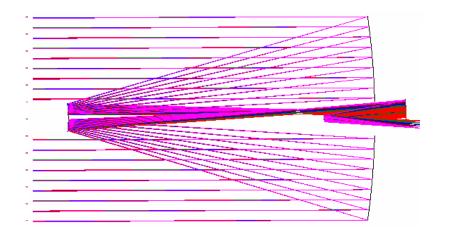
Baffle Tube

Spacecraft & Science Instruments



6 meter Optical Design

Ritchey-Chretién optical configuration F/15


Diffraction Limited Performance at <500 nm Diffraction Limited FOV of 1.22 arc minute (10 arc minute FOV with Corrector Group)

Coating: Aluminum with Mg F2 overcoat

Average transmission > 63% for wave lengths of 200 to 1,000 nm Primary to secondary mirror vertex: 9089.5 mm

Primary mirror vertex to focal plane: 3,000 mm

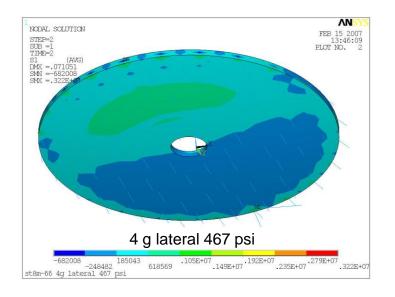
All Reflective Design

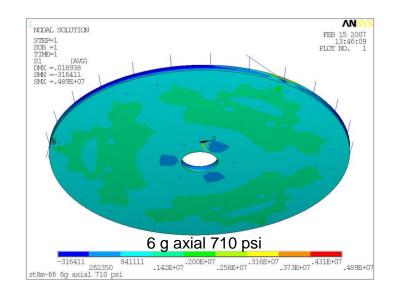
Three Mirror Anastigmatic

With Fine Steering Mirror

Multi-Spectral 10 arc min FOV

Reduced Throughput

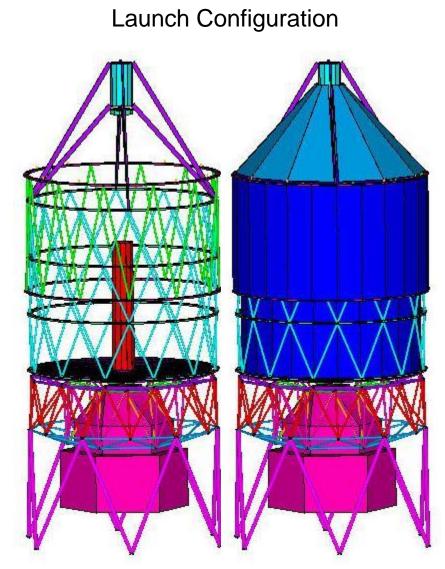



Structural Analysis

Launch loads: maximum values from POST3D

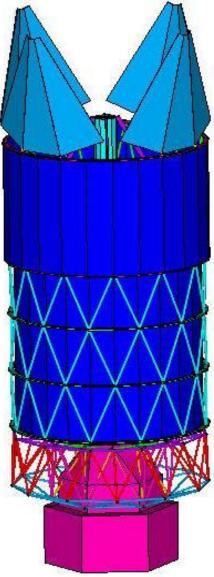
Axial:	4 g's
Lateral-y:	7 x 10 ⁻⁶ g's
Lateral-z:	6 x 10 ⁻⁴ g's

8.2 meter 175 mm thick meniscus primary mirror <u>can survive launch</u>.
66 axial supports keep stress levels below 1000 psi

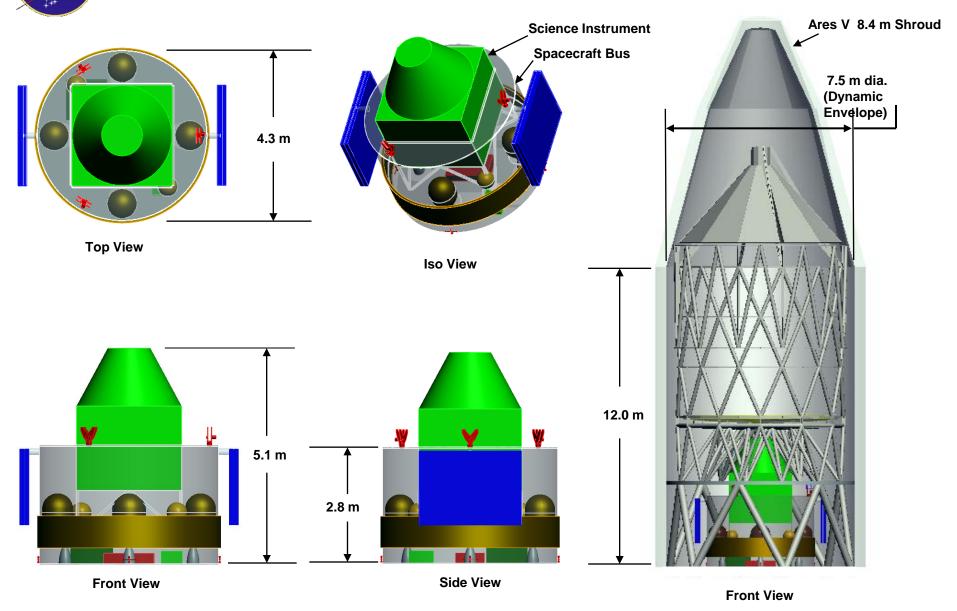


Structural Design

Operational


Tube is split and slides forward on-orbit. Faster PM or taller shroud may allow for one piece tube.

Doors can open/close


Forward Structure is hybrid of Hubble style and four-legged stinger

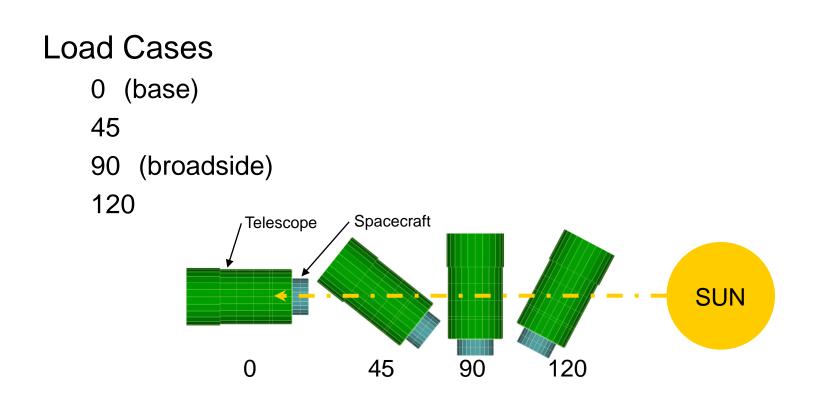
Truss Structure interfaces with 66 mirror support attachment locations

Launch Structure attaches Truss to Ares V

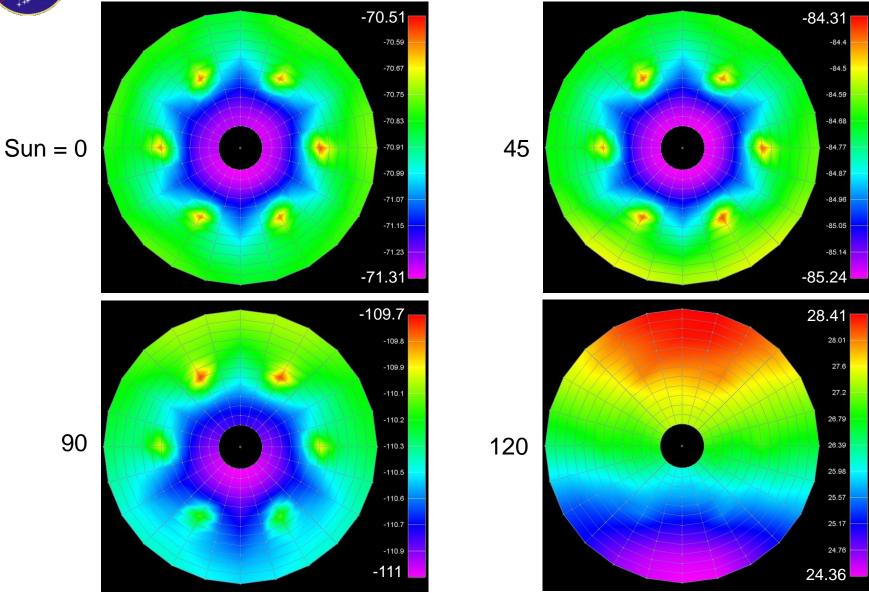
NOTE: All dimensions are in meters.

6 meter Preliminary Mass Budget

	Mass (Kg)	Heritage	Notes
Primary mirror assembly	20000		
Primary mirror	13,000	calculated	Zerodur 175 mm thk. meniscus
Primary mirror support structure	6,750	estimate	Structural Model
Primary mirror center baffel	250	estimate	Structural Model
Secondary mirror assembly	985		
Secondary mirror	185	calculated	Zerodur 50% light weight
Secondary mirror support & drive	350	estimate	Structual Model
Secondary mirror baffle	50	estimate	Structual Model
Secondary mirror spider	400	estimate	Structual Model
Telescope enclosure	5,600		
Metering structure with internal baffels	4,800	estimate	Marcel Bluth
Rear cover	300	estimate	WAG
Head ring	200	estimate	WAG
Front cover & actuator	300	estimate	WAG
Attitude Determination and Control System	300	JWST	estimate plus JWST scaled
Communications	76	EI63	
Command And Data Handling System	53	JWST	
Power	500	EI63	
Thermal Management System Structures	1060 2,000	JWST estimate	400% of JWST WAG
Guidance and Navigation	2,000	estimate	50% WAG
Propulsion	250	JWST	50% WAG
Computer Systems	50	estimate	WAG
Propellant	50	Ei63	
Docking station	1,000	estimate	WAG
OTE W / Bus mass	31,974		
Science Instrument	1500	JWST	ISIM, contains Fine Guidance Sensor
Attitude Determination and Control System	300	JWST	estimate plus JWST scaled
Communications	76	EI63	
Command And Data Handling System	53	JWST	
Power	480	EI63	
Thermal Management System	300	EI63	
Structures	2,000	estimate	WAG
Guidance and Navigation	50	estimate	50% WAG
Propulsion Computer Systems	250 50	EI63 estimate	WAG
Propellant	1530	EI63	
Docking station	1,000	estimate	WAG 33% Mass Reserve
Science Instrument W / Bus mass	7,589		
Total mass = OTE W / Bus + Science Instrument W / Bus = 39,563 kg			


8 meter Preliminary Budget is 50,000 kg (16.5% Reserve)

Thermal Analysis

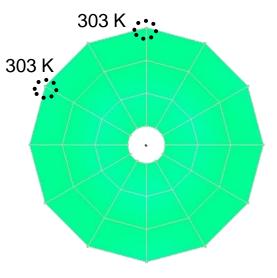

Spacecraft wrapped with 10 layer MLI blankets

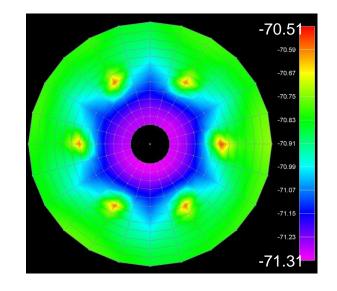
16.0 m² thermal radiators

Thermal Analysis Results

* Temperatures are in C. Note varied temperature scale for each load case.

Thermal Analysis


Active Thermal Management via 14 Heat Pipes yields a Primary Mirror with less than 1K Thermal Variation.


No Thermal Management yields a Cold PM

Sun Angle	Temp	
0 deg	200K	
90 deg	160K	
120 deg	300K	
with 1K Thermal Variation		

Thus, possible End of Life use as a NIR/Mid-IR Observatory.

Figure Change will be drive by CTE Change from 300K to 150K Zerodur CTE is approximately 0.2 ppm. ULE or SiO2 CTE is approx 0.6 ppm.

Mission Life

Initial Mission designed for a 5 yr mission life (10 yr goal) should produce compelling science results well worth the modest mission cost.

But, there is no reason why the mission should end after 5 or even 10 years.

Hubble has demonstrated the value of on-orbit servicing

The telescope itself could last 30 or even 50 years.

30 to 50 year Mission Life

Copy Ground Observatory Model – L2 Virtual Mountain

Design the observatory to be serviceable Telescope has no inherent life limits Replace Science Instruments every 3-5 yrs (or even 10 yrs)

Replacement Spacecraft in ELV Observatory has split bus with on-board attitude control and propulsion during servicing. (already in mass budget)

Autonomously Docks to Observatory. Replaces Science Instruments and ALL Serviceable Components.

Conclusion

Ares V Mass & Volume capabilities enable entirely new Mission Architectures:

- 6 to 8 meter class Monolithic UV/Visible Observatory
- 5 meter cube (130,000 kg) Cosmic Ray Water Calorimeter
- 4 meter class X-Ray Observatory (XMM/Newton or Segmented)
- 15 to 18 meter class Far-IR/Sub-MM Observatory (JWST scale-up)
- 150 meter class Radio/Microwave/Terahertz Antenna
- Constellations of Formation Flying Spacecraft

Conceptual Design Study indicates that a 6 meter class monolithic UV/Visible Observatory is achievable, compelling and could be ready for an early Ares V launch before 2018.

Primary technical challenge is autonomous rendezvous & docking for servicing