SBIR: Polymer Based Starshade Contamination Control Novel First Contact Polymers and Procedures

James P. Hamilton, PhD Wisconsin Distinguished Professor

Founder Photonic Cleaning Technologies, LLC Xolve, Inc.

Department of Chemistry, University of Wisconsin-Platteville

Director, UW System Nanotechnology Center for Collaborative R&D, NCCRD

Mechanical & Plastics Engineering, Darmstadt University of Applied Sciences, Germany

Laser Gravity Wave Interferometer

Seeker Window: Enabling US Ballistic Missile Defense System THAAD - Lockheed MAP Spec ZA10131

Protecting and Cleaning Precision Surfaces

Outline of Presentation:

- Background: For Orientation
- Show (quickly) Examples in Use Success
- We have the data: Mirrors, CCD's, Laser Optics, Space Surfaces
- SBIR Phase II Results so Far (1.25 Qtr's)
- Conclusions and Future Work

First Contact Polymer End Game: Routinely Maintain Mirrors at Max Reflectivity, Extend Coating & Optic Lifetime, Eliminate Scatter, & make Zero Defect Coatings.

Keck, Gemini, CFHT – Hawaii Chile - ESO LAMOST- China LIGO - Caltech/MIT DES CAM – Fermilab/LBNL CDMS – Stanford/Fermilab GTC– Canary Islands NASA GSFC NASA JPL

Typical Methods of Cleaning Precision Surfaces like Optics

Cotton applicator Drag Wipe

Blowing Clean

Alcohol/Acetone Drag Wipe

CO₂ Snow Cleaning

Historical Methods of Cleaning Optics. Welcome to the future.

Photonics Technologies & Solutions for Technical Professionals Worldwide

Our top 20 point of the first Contact stories of the first Contact LGO leads the stores of the first Contact

Photonics guides remotely piloted aircraft PAGE 23

Galvo scanners support ultrafast laser micromachining PAGE 41

A No Residue Strip Coating Protect & Clean

1/20th the adhesion of Scotch Tape on Aluminum - SAFE

First Contact vs Scotch Tape (810) Peel from Borofloat Glass First Surface Aluminum Mirror

Cleaning & Protection

"THE Protection and Cleaning Solution"

"Cleaning and Protecting Precision Surfaces in Manufacturing,

Assembly, Shipping, Coating and Storage"

Value Propositions:

- 1. Asset is ready when it is needed.
- 2. Save time. Save Money. Quick clean. Space Ready.
- 3. Clean in situ No Realignment
- 4. Cleanroom clean without the Cleanroom.
- 5. Clean the Uncleanable-Easily: Sensors, CCD's, FPA's, Gratings
- 6. Eliminate Diffraction Rings from Dust: Laser Patterning, Holography
- 7. Zero Defect Coatings: Cleaning before coating
- 8. No Residue, Vacuum compatible
- 9. Simple, Green, Easy, Reproducible
 - Easy to use No special training needed.
 - No mixing. Doesn't tear.
 - No thinning. Safe in Coating Chambers.
 - No Residue Removes Fingerprints.

Contamination Control & Surface Protection

Problem I: Reduced Performance

Operating Surface: US Flagship 10 m Telescope W.M. Keck, Hawaii.

Cleaning before coating.

Enabling Zero Defect Coatings.

Some surfaces are "uncleanable".

Nanoparticles & Residue very hard to remove.

Problem II: Destruction

Laser Induced Damage: Optics & Optical Coatings

Contamination Control & Surface Protection

Zero Dust Tolerance -Literally.

Cleanroom Clean without the cleanroom.

Starshade Telescopes 2025?

A massive sandstorm blowing off the northwest African desert has blanketed hundreds of thousands of square miles of the eastern Atlantic Ocean with a dense cloud of Saharan sand. The massive nature of this particular storm was first seen in this SeaWiFS image acquired on Saturday, 26 February 2000 when it reached over 1000 miles into the Atlantic. These storms and the rising warm air can lift dust 15,000 feet or so above the African deserts and then out across the Atlantic, many times reaching as far as the Caribbean where they often require the local weather services to issue air pollution alerts as was recently the case in San Juan, Puerto Rico. Recent studies by the U.S.G.S.(http://catbert.er.usgs.gov/african_dust/) have linked the decline of the coral reefs in the Caribbean to the increasing frequency and intensity of Saharan Dust events. Additionally, other studies suggest that Sahalian Dust may play a role in determining the frequency and intensity of hurricanes formed in the eastern Atlantic Ocean (http://www.thirdworld.org/role.htm]) Provided by the SeaWiFS Project, NASA/GSFC and ORBIMAGE

GTC

Sahara Dust on GTC

Backlit Keck Mirror

Mirror Traffic: VLT crews out on a Sunday drive

Acid Cleaning before washing.

8.2m Mirror driven for cleaning & recoating: Atacama desert in Chile.

Acts of desperation: Use First Contact. Clean & Protect in situ.

ashlight through 3 year old Al Mirror Coating on Keck Primary Mirror Segment

Mirror Name: La Palma		n Canarias Telescopio: 2/2/16 Reflectivity %			
Color	λnm	Before	After	Orig. %	% Gain
Blue	470	81	90	92	9
Green	530	81	90	91	9
Red	650	79	89	90	9
Near IR	880	77	87	88	10
	Total Int				
	Before	After	Improv.	Original	
-	7.63	0.88	6.75	0.2 [‡]	

This mirror had light dust, water marks, some pinholes, insects marks, bugs & some microscratches.

Primary Mirror Segment Installed 3/27/2015, removed January 2016

What this data proves, is that regular maintenance of mirror surfaces with First Contact Polymer can maintain reflectivity indefinitely and prevent damage.

Cleaning aluminum coating on dirty, 3 year old mirror segment.

Mirror Name: Cardone		Reflectivity %				
Color	λnm	Before	After	Orig. %	% Gain	
Blue	470	72	88	91	16	
Green	530	71	88	91	17	
Red	650	69	87	90	18	
Near IR	880	67	86	87	19	
	Total Integrated Scattering, 670 nm					
	Before	After	Improv.	Original		
	10.29*	2.38	7.92	0.2*		

This mirror had thick Saharan dust, water marks, pinholes, insects marks, bugs & microscratches from CO₂ cleaning due to dust.

Primary Mirror Segment Installed 3/27/2012, removed January 2016

*essentially offscale reading on TIS instrument. *Regular cleaning over the years resulted in roughness causing 0.1 TIS moving to 0.2 baseline.

The End Game for Massive Telescopes: Routinely Maintain Mirrors at Maximum Reflectivity Dramatically (Indefinitely?) Extend Coating Lifetimes

Photo Credit: James Hamilton

W.M. Keck Telescope Segments with First Contact Polymer

Photo Credit: Steve Doyle

Vandenberg AFB Western Range Depot Optics Group

Removing the Protective Polymer Coating Worth Repeating: This Environmentally-Friendly process leaves <u>no</u> hazardous waste!

- Repeated applications can be used to remove difficult contamination.
- Polymer solution dissolves itself to remove any fragments.
- Multiple applications will create a strong, thick polymer film.
 Protect the optical surface indefinitely from salt fog, particulate contamination, fingerprints, and incidental contact.

Before

After

First Contact Polymer "No touch, One step, Cleaning process"

Actual Customer Photos - Takahashi Coated CaF₂ Lense

~\$200,000 IR Focal Plan Array- Previously Uncleanable

Cleaning the Uncleanable.

Nomarski Microscopy Images, PCT

How to determine Optical Surface Cleanliness

Metrology: Mechanical, Optical, Electron

- Mass of Residue
- Differential Interference (DIC) Microscopy
- Scanning Electron Microscopy (SEM), Surfscan (KLA)
- Total Incident Scattering, Laser Induced Damage Testing
- Electron Spectroscopy (XPS, ESCA, Auger)
- Atomic Force Microscopy (AFM)
- Spectroscopy
- Polymer Properties

Our Surface Research:

A progression geared towards demonstrating atomic level cleanliness.

Signals in synchrony

When shifted by 0.007 seconds, the signal from LIGO's observatory in Washington (red) neatly matches the signal from the one in Louisiana (blue).

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO- T1000434-v1	LIGO	Date 7/22/10	
Advantages of clear	ning optics with Red	d First Contact	
Garily	ynn Billingsley, Margot Phelps		
	stribution of this document: GO Scientific Collaboration		
	s is an internal working note of the LIGO Laboratory.		
California Institute of Techno LIGO Project – MS 18-34	24	Institute of Technology oject – NW22-295	
1200 E. California Blvd.		5 Albany St	
Pasadena, CA 91125	Cambr	Cambridge, MA 02139	
Phone (626) 395-2129		(617) 253-4824	
Fax (626) 304-9834		617) 253-7014	
E-mail: info@ligo.caltech.eo	du E-mail	info@ligo.mit.edu	

Caltech/LIGO

"Bidirectional Reflectance Distribution Function."

Before 2.05 ppm avg BRDF

After MeOH Dragwipe 10.7 ppm avg BRDF BRDF = Reflectance of a target as a function of illumination geometry and viewing geometry.

"Not only did cleaning with First Contact leave no residue, it also removed nearly all the residue left by the methanol. -LIGO Internal Report T1000137-v3

After First Contact 2.05 ppm avg BRDF

Caltech/LIGO

Sequential Progression First Contact BRDF Tests - LIGO Report

Apply. Peel. Repeat as/if needed.

"A highlight of the BRDF tests shows that repeated applications of FC only improves optical surfaces"

"Optical contamination control in the Advanced LIGO ultra-high vacuum system", Margot H. Phelp, Kaitlin E. Gushwaa, and Calum I. Torriea, Proc. of SPIE Vol. 8885, 88852E · doi: 10.1117/12.2047327

-LIGO Laboratory, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA

Atomically Clean after: Before and after XPS Spectra on Glass

No Residue.

In fact, First Contact[™] polymers actually removed previously existing carbon contamination present on the Si & glass surfaces.

Integrated peak area: 4 monolayers removed.

Prep for vacuum. Remove water, organics.

Only First Contact[™] didn't leave residue...

High Power Laser Damage Threshold (LIDT) – 355nm

No Change in LIDT = No residue = No Damage

NASA's Starshade Exoplanet Search Jet Propulsion Lab SBIR 2017

Cleaning & Protecting is a Balance of Adhesion and Release

Calibration, Precision & Accuracy

Before Phase II SBIR

Substrates

Substrates

Mars Viking Lander: Heat Sterilization 1976

Spores, Bacteria, RNA, DNA, Prions?

Compliance with Planetary Protection requirements is mandatory for NASA missions per

NASA Policy Directive (NPD) 8020.7G: Biological Contamination Control for Outbound and Inbound Planetary Spacecraft.

SEM Images of E. Coli and Substrates

E. coli rods in Luria Broth

SU1510 5.00kV 18.4mm x4.00k SE

10.0um

E. coli pooling in a drop of Luria Broth

First Contact Removes E. coli from Brass Surface

First Contact Formulation	Growth		
	Aluminum	Brass	Silicone
None	+	+	+
L Class	+	-	+
R Class	+	-	+

Siliconizing Glass Improves First Contact:DNA Binding on Glass

- Siliconized Glass does not degrade DNA (Lane 13)
- All polymers adhere to DNA on siliconized glass (Lanes 2, 6, 10)
- Additional formulations may remove DNA from untreated glass (to be tested)
- PCR controls confirm no contamination (Lanes 16, 17)

Cumulative DNA Removal: First Contact on Brass

Polymer removes DNA completely from untreated Brass (Lanes 2-5, 7)

Additional rounds of polymer treatment remove additional DNA (Lanes 6/7, 8/9)

The End Game for Massive Telescopes: Routinely Maintain Mirrors at Maximum Reflectivity Dramatically (Indefinitely?) Extend Coating Lifetimes

Summary

- Cleanroom Clean without a Cleanroom
- Assets will be Mission Ready: Just Peel
- UHV & Space Compatible
- Extend life of Coatings and Laser Optics
- Create Zero Defect High Power Laser Optics (R&D)
- Critical Surfaces Protected & Clean after peel.
- Decontaminate Critical Surfaces
- Clean the Uncleanable
- Reduce Downtime

hamiltonj@photoniccleaning.com

Dark Energy Survey Camera

3 sq. deg. Field of View Each image will contain:

- ~ 20 Galaxy clusters
- ~ 200,000 Galaxies

Each night ~ 300 GB Entire survey ~ 1 PB

520 Mpixel!!

El Blanco Chile <u>Total DOE cost \$24M</u> <u>Plan first light Oct. 2010</u>

DES Focal Plane

62 2kx4k Image CCDs 82kx2k focus, alignment CCDs 4 2kx2k guide CCDs

The Dark Energy Survey Camera: DECam

3 sq. deg. Field of View Each image contains:

- ~ 20 Galaxy clusters
- ~ 200,000 Galaxies

Each night ~ 300 GB Entire survey ~ 1 PB El Blanco - Chile

Static Sensitive!!!

DES Focal Plane

62 2kx4k Image CCDs 4 2kx2k guide CCDs 82kx2k focus, alignment CCDs

Removable Polymer Films with Controlled ESD Conduction

Average of Impedance between 100-300 MHz for SWNT doped films. These films were used to protect and clean Dark Matter sensors and astronomical CCD detectors on DESCAM built at Fermilab on the following slides.

"Surface cleaning of CCD imagers using a electrostatic dissipative nanotube doped formulation of First Contact", G.Derylo, J.Estrada, B.Flaugher, J.Hamilton, D.Kubik, K.Kuk, V.Sparpine,), Proc. SPIE 7018, 701858 (2008); doi:10.1117/12.789654

520 Mpixel!! Dark Energy Survey Camera

First contact test Flag 3% below background

Mask of flagged pixels

20 second flat image

This was a BRAND NEW CCD fabbed at LBL and sent direct to the Fermilab Cleanroom.

After cleaning with First Contact

Before cleaning with First Contact

"Surface cleaning of CCD imagers using a electrostatic dissipative nanotube doped formulation of First Contact" G.Derylo, J.Estrada, B.Flaugher, J.Hamilton, D.Kubik, K.Kuk, V.Sparpine,), Proc. SPIE 7018, 701858 (2008) doi:10.1117/12.789654