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Planar Thin Film Optics and Electro-Optical Systemssean-

~100% efficient

Micrometer Thin

Broadband

Lenses

Beam shapers Fabricated as
coatings and films

Continuous structure

Fast and inexpensive
fabrication

Free-form/flexible  Vortex phase plates Arrays and microarrays Scalable to very large
sizes
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Thinnest optics _AEAN

Lens
38 mm, F=460 mm @ 442 nm, L =1.3 um




Thinnest optics _AEAN

“Prism” Lens arrays




Electrically switchable




Switchable planar lenses _AEAN
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Non-mechanical beam steering _AEANS
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The concept of diffractive waveplates




Optics of Diffractive Waveplates _BEANS

Max efficiency (~ 100%)
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Optics of Diffractive Waveplates _BEAN
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Vector Vortex Waveplates (VVW) _AEAN




Vector Vortex Waveplates (VVW) AEANS
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Cancelling light on the axis of VVWs

AM2AN

—




Light propagation through a VVW _BEANS

Intensity on axis
n
(P
"\ z

Vortex core size

pn = JAz(1 + 0.54n)




Challenges: reducing defect size
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VVW with submicron defect size _BEAN




Challenges: bandwidth AEANS
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Multilayer achromatic half-wave plates

_BEAN

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA

VOLUME 49, NUMBER 4 APRIL, 1959

Achromatic Combinations of Half-Wave Plates

Caarres J. KOESTER
Research Center, American Optical Company, Southbridge, M assachusells
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Fic. 1. (a) The two-element achromatic rotator. 8; and 8» are
the azimuths of the slow axes of the two half-wave plates. (b) The
three-element achromatic rotator. 6/, 82/, and @;’ are defined as
8, and 8: above. OA is the azimuth of the plane of polarization of
the incident light, OB is that of the emerging light.

In Fig. 1(a) it is easily seen that if ;=225 and
0.=067.5° then for the wavelength Ao the plane of polari-
zation is rotated 45° by the first plate, another 45° by
the second plate. This arrangement is not achromatic.
If the angles are changed to

6,=22.5°+5 (1a)
and
0,=67.5°—3, (1b)

KOESTER Vol. 49

For the three-element rotator, the configuration of
slow (or fast) axes is shown in Fig. 1(b). It can be seen
that if 8,'=11.25° 6,’=45° and #;'=78.75° then for
the wavelength Ao the plane of polarization is rotated
22.5° by the first plate, an additional 45° by the second
plate, and 22.5° by the third plate, a total of 90°. If
the angles are changed to

0/ =11.25°+3 (2a)
8, =45° (2b)
By ="78.75°—3 (20)

the total rotation for wavelength A remains 90°. But in
addition two other wavelengths, A1 and A, are also
rotated 90°, For §=0,75° and 0.25° the values of A,
As, A, and Az are given in Table I(h).

As with the two-element system, the smaller the value
of § the narrower the range of achromatization, but the
greater the degree of achromatization within that range.
In practice the value of & is selected by turning the
plates relative to each other until the best achromatiza-
tion is obtained for the particular situation.

Achromatic combinations of four and even more
plates are possible. The azimuth angles of the slow axes




Internally twisted layers _BEANS
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Architectures of broadband DWs P N
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Theory vs practice

_BEAN

Diffraction efficiency (%)
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Tolerance analysis for hybrid three layer design_sgeam-

Retardation (degrees)
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Fabrication cycle

EA

24



Coatings on polymer films
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Future Tasks




Optimize vortex structure
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Architectures for better tolerance
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Retardation (waves)
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Architectures for better tolerance _BEAN

Double twist Hybrid Quad twist
2 layer 3 layer 4 layer

First layer retardation (nm) 256.2 182.6 323.9
First layer twist (degrees) 72.3 84.9 111.2
Second layer retardation (nm) 256.2 323.9 170.6
Second layer twist (degrees) -72.3 0 -72.5

Third layer retardation (nm) N/A 182.6 170.6
Third layer twist (degrees) N/A -84.9 72.5

Fourth layer retardation (nm) N/A N/A 323.9
Fourth layer twist (degrees) N/A N/A -111.2

Maximum deviation of total retardation from half
wave over operating wavelengths (degrees) 0.44 0.04 0.03




High precision characterization techniques _geam-
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Fabrication technology improvement _BEANS
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Fabrication technology improvement _BEANS




Fabrication technology improvement
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Fabrication technology improvement _BEANS
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Fabrication technology improvement
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Fabrication technology improvement
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Fabrication technology improvement _BEANS
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* On-site recording

* On-site curing

 Compatibility between layers

* Recording with no mechanically moving parts




Improving materials, adapting to UV and other AEANS
spectral ranges LWIR CDW
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Exploring multifunctionality _EEAN

Vortices + Lenses + ...
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Diffractive Waveplate Lens _AEANS
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Tunable filters and shutters _EEAN
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Non-mechanical shutter
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DW lens converting a flat into
a concave (convex) Mirror




Non-mechanical line-of-sight switch _AEANS
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high diffraction
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New 4G Optics Technology
Extends Limits to the Extremes
Advances in liquia crystal and quﬁcrysjpyme} materials have made it possible

to modulate the orientation of the anisotropy axis at high spatial frequencies, ushering
in the next generation of optics for space communications and intraocular lenses.

BY NELSON TABIRYAN AND DAVID ROBERTS, BEAM ENGINEERING FOR ADVANCED MEASUREMENTS
DIANE STEEVES AND BRIAN KIMBALL, U.S. ARMY NATICK SOLDIER RD&E CENTER

From the advent of the candle to the emergence the first
laser diode, there have been numerous advances in light sources.
Afterall, all materials radiate when energized one way or another.

Optics, however, have undergone a slow evolution.

There are only a few ways to control light. Isotropic materials
such as glass modulate shape or take advantage of the refractive
index. The first case serves as the foundation for the first gen-
eration of optics, and is still overwhelmingly in use today given
the capability of strongly influencing light propagation in a broad
band of wavelengths.

Weight and size, however, limit refractive lenses and prisms to
applications that require relatively small optics. Gratings based on
modulation of refractive index may exhibit high efficiency in thin-
ner structures, however, compromising bandwidth.

Anisotropic materials offer two more ways to control light. The
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Flgure 1. Modulation of optical phase due to spatial modulation of the anisotro-
oy axis orlentation of a half-wave retardation plate. Rotation of linear poarization

modern liquid crystal display controls light by modulation of bi-
refringence. The thickness of liquid crystal layers is limited to mi-
crometers due to light scattering and structural defects in thicker
layers. Therefore, even with huge optical anisotropy, An=n; —
n, ~ 0.2 for commercially available materials and An = n, — n,
~ 1 for experimental compounds (o, and n, being the principal
values of refractive indices of the liquid crystal), the maximum
obtainable phase modulation by a liquid crystal due to modulation
of birefringence is small for developing lenses or other optical
components that could challenge conventional optics.

Modulating transparent anisotropic thin films

Orientation of the anisotropy axis is the only remaining optical
parameter to modulate in transparent anisotropic materials. Mi-
crometer-thin material films engineered to have spatially varying

of the ani axis titute the fourth
of optics (4G optics) that extends the limits of optical and electro-
optical systems to extremes in terms of optical strength, band-
width, aperture size and versatility.
« Optical power — comparable to that of glass optics.
+ Bandwidth — encompassing wide portions all over the elec-
tromagnetic spectrum.

Figure 2. Examples of diffractive wave plates. Top: optical axis orientation
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