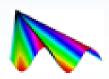
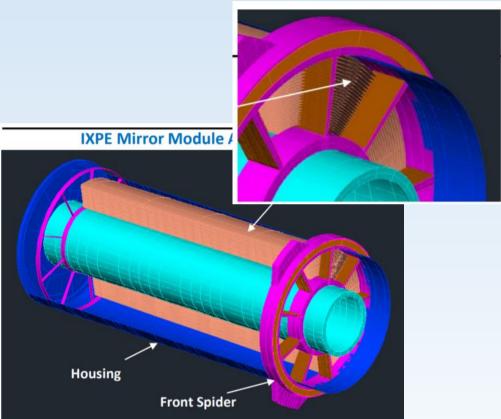
IXPE Mirror Fabrication: Diamond Turning of Mirror Mandrels


MIRROR TECH DAYS 2018

John M. Tamkin, VP R&D Chris Rich, CTO Wavefront Technology, Paramount CA, 90723, USA email: jtamkin@wft.bz

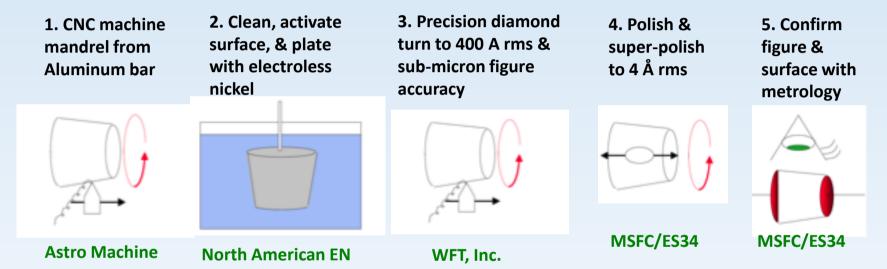
<u>Overview</u>

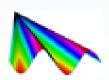

- Background
- •Requirements
- •Horizontal Drum Lathe platform
- Mounting Considerations
- Metrology
- •Results
- •Next Steps

Imaging X-Ray Polarimetry Explorer

- Set of three mirror module assemblies (MMA) focus X rays onto three corresponding focal plane detector units
- Uses a single rigid spider to support the 24 nested shells and attach module to structure.

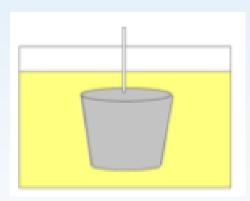
https://ntrs.nasa.gov/archiv e/nasa/casi.ntrs.nasa.gov/2 0170007528.pdf



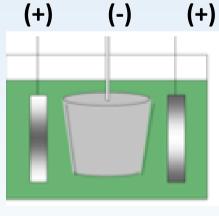

B. D. Ramsey, "Optics for the Imaging X-ray Polarimetry Explorer (Conference Presentation)," Proc. SPIE 10399, Optics for EUV, X-Ray, and Gamma-Ray Astronomy VIII, 1039907 (3 October 2017);

Mandrel Prep

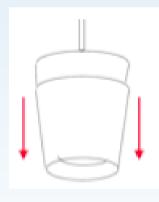
Mandrel Preparation – 24 mandrels from 160 to 270 mm diameter by 700 mm long



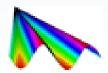
Shell Fabrication


Shell Fabrication – 4 shells replicated from each mandrel

6. Ultrasonic clean & passivate mandrel

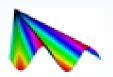

MSFC/ES34

7. Electroform Ni/Co shell onto mandrel



MSFC/ES34

8. Separate optic from mandrel in cold water bath



MSFC/ES34

Shell Requirements

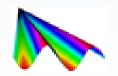
Parameter	NASA Requirement		
Length	700mm		
Diameter	160mm to 270mm		
L/D Ratio	4.3 to 2.6		
Circularity (out of roundness)	0.0125 mm (0.0005")		
P-H Slope Error	10 microrad		
Intersection shift	0.5 mm (0.020")		
Radius error	0.025 mm (0.001")		
Axial figure profile	10 arcsec		
Bow (parabola)	1.5 micron		
Roughness (rms)	40 nanometers		

Horizontal Drum Lathe Capabilities

- 2600mm Length, 2000mm cutting zone
- •550mm max diameter
- •2500kg max load
- •1nm Z resolution, 0.034nm Xresolution
- Weighs in around 60 tons
- Primary use for precision microstructures such as tailored diffusers, corner-cube reflectors etc.
- We use for variety of additional applications requiring precision microoptics

Operating Conditions

•Environment:


- •Ave. temp 21.74 °C
- •Std. Dev 0.148 °C

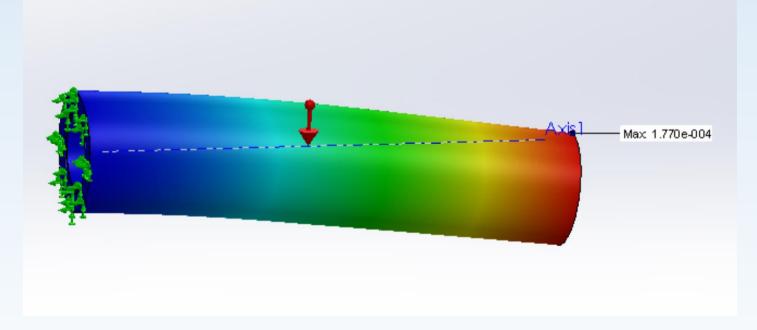
•Headstock Monitor:

•Ave. temp 21.73 °C •Std. Dev 0.076 °C

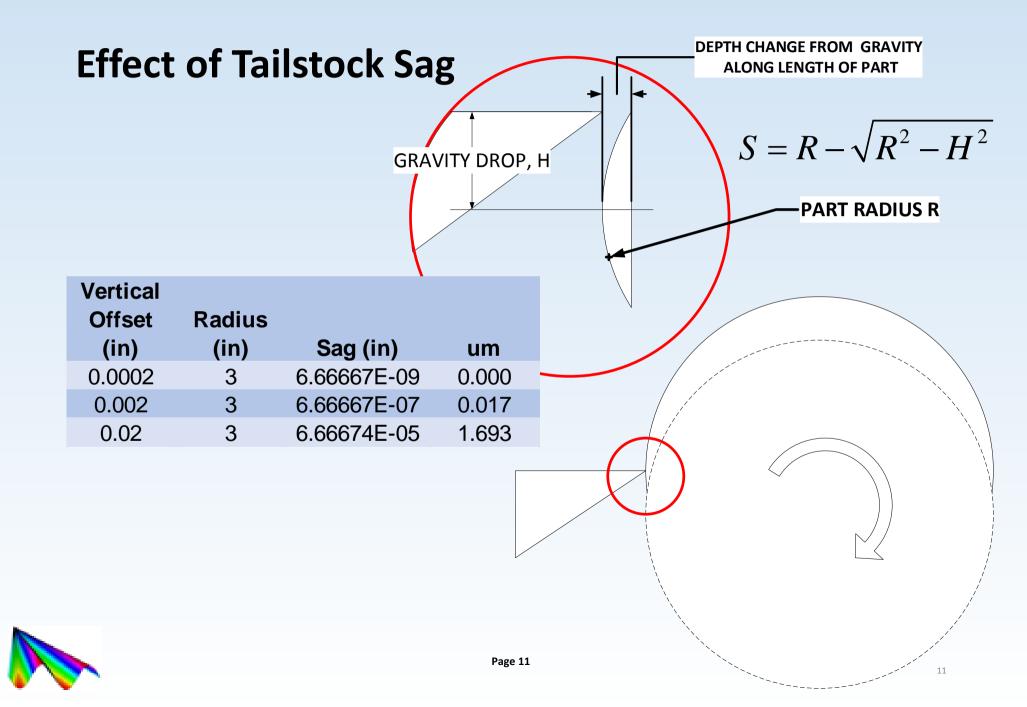
•Z-axis:

- •Ave. temp 20.35 °C
- •Std. Dev 0.044 °C

Mounting Considerations

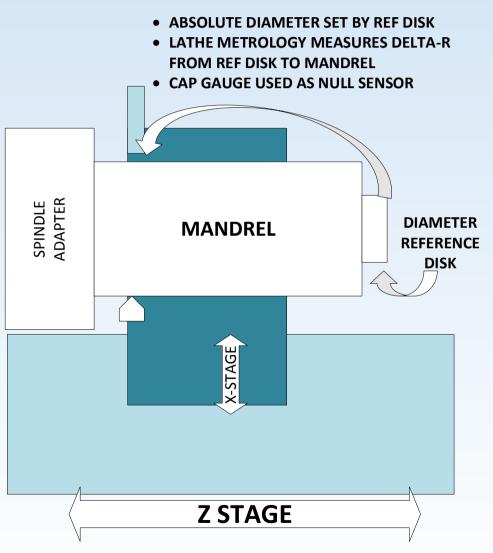

 Common rule of thumb: L/D > 2.5 needs tailstock support

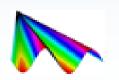

- Early testing indicated compression of mandrel leads to warped surface upon release
- •Best performance with support by headstock only
- •Is this a problem?

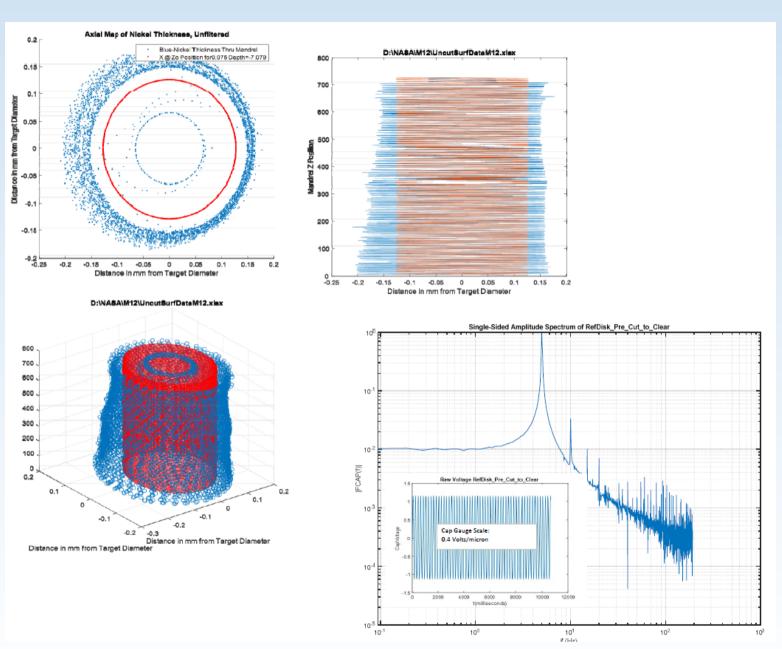


Analysis of Headstock support

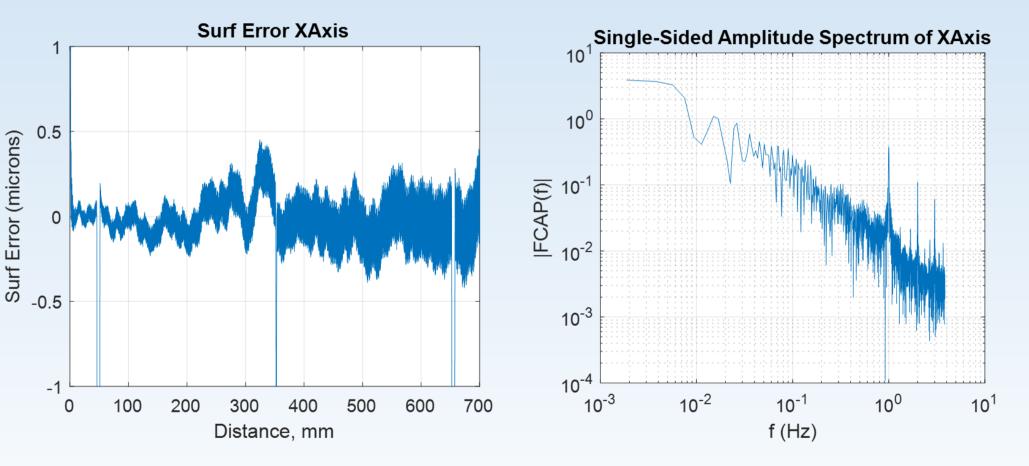
•Both FEA and 1st order calcs indicate gravity-induced "drop" of tail end of mandrel to be about 4 microns



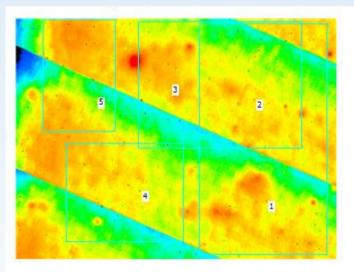


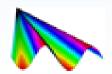

Metrology: keep it simple.

- •Matching NASA's CMM: metrology audit, NISTtraceable master reference, or what?
- •Solution:
 - Have NASA fabricate a reference disc, and measure
 - We mount disc to each mandrel and use as absolute reference
 - Use inherent HDL accuracy for the rest



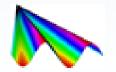
Uncut Surf Profile


Typical Surface Profile (acquired while spinning)



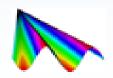
Surface Roughness

- •Surface roughness measured indirectly through casting (potting) surface
- Measured with Confocal 3D laser scanner

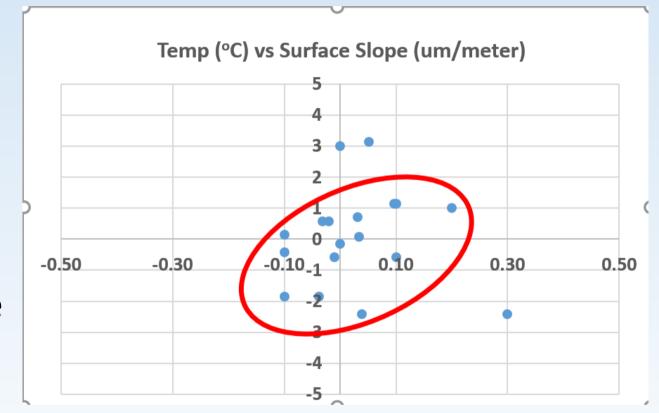

	Rp	Rv	Rz	Ra	Rq	Rsk	Rku
Seg.1	0.4313um	3.2568um	3.6881um	0.0368um	0.0518um	-7.5849	308.1413
Seg.2	0.5993um	3.6423um	4.2416um	0.0345um	0.0479um	-7.7920	380.3383
Seg.3	0.2309um	2.7525um	2.9834um	0.0495um	0.0683um	-5.6244	165.2545
Seg.4	0.1275um	2.3176um	2.4451um	0.0370um	0.0535um	-8.1145	236.3501
Seg.5	0.4469um	3.4905um	3.9274um	0.0420um	0.0615um	-13.0166	613.4019
See 6				-	2 D D	9	

Results: Overview

- •All 19 mandrels successfully completed with no rework, on time
- •NASA results for 1st 14:

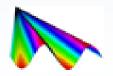

Parameter	NASA Requirement		
Length	700mm		
Diameter	160mm to 270mm	WFT PERFORMANCE	
L/D Ratio	4.3 to 2.6	Parabola	Hyperbola
Circularity (out of roundness)	0.0125 mm	0.57um	1.42 um
P-H Slope Error	10 uRad	1.6 uRad	
Intersection shift	0.5 mm	0.135 mm	
Radius error	0.025 mm	0.0028 mm	
Axial figure profile	10 arcsec	8.0 arcsec	
Bow (parabola)	1.5 micron	1.16 micron	
Roughness (rms)	40 nanometers	eters 23.5 nm	

Distributions


•Under spec for radius, ellipticity by 10x•Form, roughness are at spec

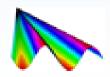
	Radius um	Form (PV) um	Ellipticity um	Rq (P) nm	Rq(H)nm
Average	0.4	1.06	0.49	46	51
STDEV	0.9	0.37	0.45	14	17
Min	-1.2	0.40	0.10	30	32
Max	1.79	2.00	1.40	90	88

Temperature Performance


- Not enough data yet to perform good statistical analysis
- •Trend shows correlation between surface slope and temperature

Next Steps

- •New Distance Measuring Interferometer will replace cap gauge:
 - Higher surface resolution (picometer vs nanometer)
 - Higher spatial resolution: 30 um vs 3mm
- New Fast Tool Servo has "hooks" for active feedback
- •GOAL:
 - •Improve final cut performance
 - •Decrease processing time


Acknowledgements:

•Many thanks to NASA MSFC:

- •Chet Speegle
- •Brian Ramsey
- Steve Pavelitz
- •Jeff McCraken

•Wavefront Team:

- •Jon Chang
- •Oye Oyeyipo
- •Fredy Zuniga

