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Unmet Need: Correct Aberrations in Cubesat Optics

• Compact high-quality optics in a cubesat volume requires freeform mirrors in order 
to realize necessary design degrees of freedom (DOF)

• Mfg and assy of freeform reflectors expensive and time consuming for each unit

• Process: measure assy aberrations, then correct with VIRGO freeform GRIN phase 
plates, custom delivered for each unit

• Results: Vacuum, LEO, quality optics, lighter, smaller, in far less time at less cost

A rotationally symmetric mirror (left) based optical path is not as space 
efficient as one based on a non-rotationally symmetric freeform mirror (right) 
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Typical two mirror optical path for 
small satellites; space is limited



NASA Optical System Design

 NASA’s FF PP NT (freeform, positive/positive tilt, and non-telecentric) mirror 
design is the assumed baseline for our design

 We have from NASA a description for an initial design case with assembly and 
manufacturing errors
o Described with Zernike Polynomials

 Now designing an optimal GRIN material and 3D free-form profiles, with new 
design tools, to correct the as-built aberrations 
o Because we are not at the pupil, optic path modifications affect each field differently
o Need to select a single or dual corrector plate architecture

NASA optics path

Optical Design
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Voxtel Design w/two FFG PCPs

Phase I Optical Design Meets Objectives

 NASA’s optic system design for Phase I
o Entrance Pupil Dia: 50 mm, FOV: 2.86° x 8.73°, Focal Length: 250 mm
o λ =  587.56 nm

 Dual freeform GRIN (FFG) phase corrector plate (PCP) design is 1st Phase II target

Optical Design
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08:43:51

Plane-Sym 2-mirror telescope Scale: 0.65 GJW  01-Dec-17 

38.46   MM   

FF PP NT NASA Design

Summary table (above) and cross section Index 
maps for (top) aperture side alone, (middle) 

aperture side w/both, and (bottom) field side 
w/both FFG optics from Voxtel’s Phase I research



Phase II Optical Design Work

 In Phase II we will
o Explore using other freeform mirror coefficients, as only originals were varied in Phase I
o Explore using spacing and angular tilts of freeform mirrors (fixed in Phase I)
o Polychromatic performance tools are being created for Code V and implemented
o Refractive index range (∆n), rate of index change variation across FFG PCP constrained by VIRGO
o Printed area and volume constrained by cubesat optic path (e.g., 50 mm diameter)

 NASA Provides, for final design and interim experiments;
o Assembly and alignment geometry tolerances and expected errors (test cases)
o Freeform mirror aberrations (as Zernike polynomials)

 With this information, we will select type of PCP 

o Simple corrector, or with optical power
o One or two phase corrector plates

Optical Design

5

Zernike Polynomial Terms
Combined OPD 
correction plateTerm Combinations

Zernike 
#



45 mm phase corrector plate 
(PCP) on an optic flat 

Fabricating Freeform Gradient (FFG) PCP w/VIRGO

 Volumetric Index of Refraction Gradient Optics (VIRGO) process in development

 In earlier NASA work (Contract NNX14CG41P) we fabricated PCP on optic flats

 FFG PCP’s are to be printed on 1/10th wave fused silicon or glass substrate

 Optical ink will be optimized for this application (minimizing 2nd order dispersion)

Phase Corrector Plate Fabrication
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160 µm pitch, 32,400 lens array

Freeform diamond-turned 12 mm f5, 
w/convex 200 mm radius 

Plano 4 mm GRIN (left) & 
GRIN w/62 mm convex (right)

0.5 mm Hex Pack Hogel Lens Array

UV stimulation to show nanoparticle gradient



Additive Manufacture of Freeform GRIN Optics

On-demand 
Nanocomposite 
Ink Formulation

Multi-level Print 
Diffusion Masks

High-throughput Inkjet 
Fabrication

Metrology 3D & Freeform 
GRIN Optics

On-demand 
Nanoparticle Filler 

Synthesis

Freeform GRIN 
Design 

Print Head 
Load

Volumetric Index of Refraction Gradient Optics (VIRGO) 

• 24-hour design and build cycle time



VIRGO Ink Jet Print Fabrication Process

Fabrication process
• Design parameter(s) chosen
• 3D GRIN profiles selected based on optimization
• Nanofiller concentration profiles developed based on:
o Nanoparticle diffusion
o Number of inks used

 Binary or multi-level optical index levels (grey scale)
 Multiple spectral characteristics (Abbe number)

• Error diffusion halftone algorithm used to convert 
design to  binary or multi-level bitmaps

Conversion from continuous to 
voxelated bitmap for printing

Custom R&D Multi-head 
Ink Jet Print Platform

3D Freeform GRIN 
Design (FFG PCP)
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Droplets on Substrate

Phase Corrector Plate Fabrication



Index Increases w/Nanocrystal Load

Index Linearity vs Nanoparticle Fill

• We combine liquid monomer with nanoparticles (NP) such as ZrO2 for optical ink 
• As NP loading increases, index increases; relationship is locally linear

o Index measured with our abbe refractometer (repeatable to 4 decimals), and with a 
Woollam M44 Spectroscopic Ellipsometer for wide spectrum measurements

• NPs are distributed throughout body of optic to create gradient refractive index
• Liquid nanocomposites are polymerized (cured to a hard state) layer by layer
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Nanocomposite Inks



Nanocomposite Optical Ink Design

• Index change between high and low index optical inks can vary with wavelength, 
which produces all the normal chromatic aberrations

• Dispersion and partial dispersion of Δn over the spectrum is controlled by balancing 
NP dispersion in the formulation of high and low index ink

• Balance of optical power (total Δn), partial dispersion, and chemical complexity

• Voxtel’s custom fluoropolymer improves stability and optical power

Index vs Wavelength (dispersion) for Ink Components 2 NP ink design minimizes dispersion

Nanocomposite Inks
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VIRGO Resolution Can Map 21 Zernike Polynomials

 Comparison of Zernike polynomial (5,5) to measured phase image of VIRGO printed 4 
mm plano GRIN lens (scaled to the 50mm Zernike aperture)

 Demonstrates that we can achieve the Zernike polynomial phase variation 
requirements, which vary slowly across a 50 mm aperture relative to 4 mm lens GRIN

 Demonstration accomplished on both research and production process

Zernike (5,5) w/successful 4 mm Voxtel GRIN lens, inset The first 21 Zernike polynomials
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4 mm lens

Nanocomposite Process



New Design Tools

 Dr. Julie Bentley, working with UR graduate students, is creating a non-rotationally 
symmetric GRIN optimization tool for this program
o Integrates with CODE V as TFGRIN module
o Free-form patterns, based on Zernicke polynomials in x,y plane and Legendre in z-axis
o Will be polychromatic
o Orthogonal and Improved Δn control during optimization

 Axial dependence can cancel out some aberrations or modify their field dependence
 Use stack of phase plates (corresponding to printed layers), integrate effect
 Currently monochromatic, already demonstrates otherwise unobtainable results

o Because it is orthogonally modeled, we can add one aberration w/o additional aberrations
o Requires higher order Legendre polynomials in z axis 

Optical Design
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A non-rotationally symmetric freeform mirror 
with polychromatic light 

A non-rotationally symmetric freeform GRIN 
with 587.56 light 



Digital Holographic Microscope for n(x,y,z) Detail

 Digital holographic microscopy (DHM) 
allows for the extraction of both amplitude 
and phase information

 Quantitative mapping of phase delay 
through the sample

 Has been shown to accurately predict 
optical performance

DHM radians and wave lens measurement, 
resultant expected focus, and actual focus

Digital Holographic Microscope (DHM)

Phase Corrector Plate Optical Characterization
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MeasuredDigitally Propagated



Phase II Program Technical Objectives
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Goals Measurable Objective Metrics Approach (How)
A. Enhance or Develop 

Optical Inks Capable 
of Achieving NASA 
Requirements

• 0.4 to 3 µm 
• > 90% transmission
• Δn of 0.12, ΔPd,f < 0.000001 
• f/df > 500
• dn/dT < 10 x 10-6/K
• CTE < 20 x 10-6 m/(m K)

• Use both fluoropolymer and acrylate 
based optical inks (e.g. VBX No. 8 3NP)

• Use SiO2 nanoparticles in low-index inks

B. Design phase-
corrector plates that 
meet NASA 
Requirements

• > 80% smaller psf, 4x FOV uniformity
• 5th order Zernike polynomials
• 30 waves max correction
• 25% reduction in optic size

• Use Zernike polynomials for optical 
system aberrations & mount design 
from NASA

C. Fabricate phase-
corrector plates that 
meet NASA 
Requirements

• ½ wave accuracy
• Include system assembly mounting 

features
• impact energy > 0.5 kJ/m2

• Use Voxtel custom-designed printers
• Print flat optics and polish as necessary 

(Struers RotoPol-35 polisher)

D. Characterize phase-
corrector plates that 
meet NASA 
Requirements

• ¼ wave characterization accuracy
• Compare with design intent

Use Voxtel, UO, UR, OSU optic toolset
• Digital Holographic Microscope
• Zygo profilometer
• BYK Gardner haze-gard plus

E. Achieve 
environmental 
performance 
necessary for NASA 
mission 

• 100 temp cycle haze increase < 2%
• High vacuum, < 1% TML
• Cryogenic, 120 K
• Δn of 0.12, T% > 90%, Pd,f < 0.001%, 

impact energy > 0.1 kJ/m2 at vacuum, 
cryogenic operating points

• Model mechanical system on COMSOL
• ATAMI Instron Mechanical Tester
• Voxtel dewars
• UO CAMCOR Vacuum chambers

F. Achieve radiation 
performance that 
meets NASA 
Requirements

• Radiation per plan
• 1E12 p/cm2 @ 0.1 MeV protons
• 10E9 p/cm2 @ 1.5 MeV protons
• 5E12 e/cm2 @ 0.1 MeV electrons
• 2E9 e/cm2 @ 1.5 MeV electrons

• Perform radiation tests throughout 
program using NASA Radiation Effects 
Test Facility 

• Quarterly tests


