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Who is Semplastics?

• 18 year old company focused on high 

performance plastics in electronics

• Recent development activities in novel high 

performance materials- X-MAT®

• US patents issued- #8,961,840,#9,434,653, 

#9,764,987,#9,944,021- multiple patents pending

• NASA Phase 2 SBIR granted in April 2016 

• Space Florida Grant for 3D printing Ceramics in 

June 2017

• DOE Phase 1 SBIR for CCC Roof Tiles June 2018
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The Uncertainty of Early Stage R&D
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Typical Technology Life Cycle
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What are the main goals of the 

project? 

• Reduce areal costs to less than $250K/m² 

for UV/Optics and less than $75K/m² for IR 

systems

• Reduce the weight of mirror substrate 

through molding lightweighted structures  

using lighter X-MAT® materials (SiOC)

• Make a high performance mirror component 

that can meet NASA’s requirements
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NASA SBIR Phase 2 Technical 

Objectives

• Demonstrate Scalability by producing a 14” 

diameter mirror

• Implement and Characterize Two Different 

mirror coating systems
– Polymer Based Coating System- Zero CTE Composite

– Silicon cladding system using baseline process 

developed to coat SiC mirror substrates
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Advantages of X-MAT® OC1 

• Lightweight- 1.69 g/cc (SiC- 3.2 g/cc)

• High Temperature performance- capable of 1100C 

continuous usage

• Low Coefficient of Thermal Expansion- 0.60-1.27 

x10E-6 in/in C (-150C-300C)- Similar to Quartz

• Amorphous structure provides isotropic properties

• Very Green technology- Uses 20X less energy 

than typical SiC manufacturing processes!!
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SiC Manufacturing Process*
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*Overview of the production of sintered SiC Optics and optical sub-

assemblies, S. Williams, CoorsTek, Inc.; P. Deny, BOOSTEC Industries 

(France)  [5868-04]



X-MAT® Mirror Blank Process
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So What is the Big Deal with X-MAT®?

• Polymer resin instead of ceramic powders

• Typical plastic processes (3D printing, 

molding,machining, etc.) possible

• Shorter Manufacturing Intervals

• Chemical Bonding of the Materials rather 

than Sintering (Significantly Lower Energy)

• Tailored Material System Properties
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Significance/Review of Polymer-Derived 

Ceramics (PDCs)

• 45 year history of PDC Development 
activities

• Commercially Available Resins

• Current commercial usage limited to 
ceramic fibers, polymer coatings and thin 
ceramic films

• Multiple resin types and processes produce 
unique ceramic types and properties



PDC Technologies
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J. Am. Ceram. Soc. 93 [7] p.1807 (2010)



Polymer-Derived Ceramics 

Processing Cycle
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Polymer to Ceramic Processing
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Current PDC Limitations 

Can only produce thin films or fibers due to 
cracking and degradation of films thicker 
than several hundred microns

“ The polymer to ceramic conversion occurs with gas 
release which typically leads to cracks or pores 
which make the direct conversion of a preceramic
part to a dense ceramic virtually unachievable, 
unless its dimension is typically below a few 
hundred micrometers(as in the case of fibers, 
coatings, or foams.) J. Am. Ceram. Soc. 93 [7] 
p.1811 (2010)



Scaling of X-MAT® Technology- Largest Bulk 

PDC Made(No Fibers)-”Virtually Unachievable”

6” Mirror Blank3” Test Coupon

9.25” Hex Mirror 

Blank

19” Green Body 14” Mirror Blank 

Curved Surface 

of 6” Mirror 

Blank



PDC Pyrolysis Furnace
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Properties of X-MAT® OC1

TEST VALUE UNITS

Fracture Toughness .96 Mpa-m^1/2

Flexural Strength 43.5 Mpa

CTE 0.75 1E-6in/in˚C

Young’s Modulus 56

Gpa

Poisson’s Ratio .53 -

Density 1.69 g/cc
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SEM of X-MAT® OC1
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Glass Processing and Characterization LaboratoryGlass Processing and Characterization Laboratory

SiOC PDC Uncoated Substrate

Uncoated SiOC PDC
• Highly porous

➢ ~80% dense 

• Highly Rough Surface 

➢ RMS roughness of ~12 µm



Test Disc Photos
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X-MAT® Disc – No 

Coating

Polyimide Coated X-MAT®

Disc with Sealed Pores



Test Disc Pore Photos
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X-MAT® Disc –

No Coating

Polyimide Coated 

X-MAT® Disc with 

Sealed Pores



Zygo Process Figures
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Unground Disk Ground Disk



Zygo Process Figures (Cont.)
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Polyimide Coated Disk Aluminum Coated Disk



Silicon Cladding Chamber
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Silicon Cladding Coating Evaluation
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Zygo Evaluation of Silicon Cladding
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6 inch Mirror- Demonstration Sample
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14” Mirror Silicon Cladding
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Mirror substrate after silicon cladding by ZeCoat (14” dia.).



Pore Sealing Affects and Defects
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Examples of low 
areas

Sub-surface stress 
cracks visible over 

entire surface

Fine-ground mirror surface with Si 

cladding, ready to be polished by OMI.



Finished Mirror Image from OMI
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14” Completed Mirror(5.7 lbs)
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Deliverable 14” coated and 

aluminized ceramic mirror (front 

and back).



Ronchi Grating Test
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Ronchi grating test, 60 lpi, inside Rc. 



Major Lessons Learned

• Polyimide system for sealing/coating very 

sensitive to process T range and water

• X-MAT® process successfully built large 

scale PDC parts

• Furnace process and configuration critical to 

consistent results

• Need a better sealing/coating process for 

porous mirror component(reduce defects)
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Additional Cladding/Sealing 

Techniques- Future Developments

• Low CTE Glass to match the SiOC CTE

• Fully dense SiOC ceramic to identically 

match bulk SiOC CTE

• Current production cladding processes
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R&D Material Developments

• X-MAT® Coal Core Composites

www.x-materials.com

CCC Density- 1.2-1.7 g/cc  CTE- 2.35 10-6/C (100 C)

SiC Density- 3.1-3.2 g/cc    CTE- 3-4 10-6/C

• Engineered Anodic Particles

Specific Capacity 900 mAh/g vs 372 mAh/g for graphite

• X-MAT® 3D Ceramic Printing including SiC

37

http://www.x-materials.com/


What are Coal Core Composites?

• Raw coal powder mixed with proprietary 

ceramic-forming resin to form materials that 

are:

– Lightweight - bulk density of 1.2-1.7g/cc

– Low cost – Coal is 2-3¢/lb

– “Unburnable”

– Easily manufactured compared to typical 

ceramics – no sintering needed

– “Green” low energy processing
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Comparison of a Coal Core Composite Plate to 

Ceramic Tile and Slate



3D Printing PDC Process
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Pre-ceramic Part Transition 400C Final Ceramic Part
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3D Printed Ceramic Components



Key Milestones Met

• Demonstrated Bulk-scale Polymer-

Derived Ceramic Process – First of Kind

• Demonstrated 14” diameter Bulk-scale 

Part from Polymer-Derived Ceramics –

First of Kind

• Produced Lightweight Polymer-Derived-

Ceramic Mirror that measured 1.6” thick 

with a 14” diameter that weighed only 5.7 

lbs. – First of Kind
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Progress/Conclusions

• Both Silicon and Polyimide Coating 

Processes were evaluated

• 14.5” Bulk Component Produced/ 6” Mirror 

Demonstration Sample 

• 14.5” Silicon Cladded Mirror Completed

• Continuing Advances of X-MAT®

Technology in Scale, Performance, and 

Material System Types
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