SBIR Phase II for Contract No. NNX17CM08C

“Ultra-stable Zero-CTE HoneySiC™ and H²CMN Mirror Support Structures”

Dr. William Fischer
Principal Investigator
Office: 808-245-6465
Cell: 570-899-4191
wfischer@ascmtech.com
ASCM’s Primary Technologies

• Manufacturer of both CVC and CVD SiC
 • Capability to process other materials

• Honey SiC ceramic-ceramic composite materials family

• Radiation hard reflective coatings
Patent Pending Transparent/Translucent CVC SiC

- Transparent SiC is available commercially.
- We have a patent pending technology that would allow for production of transparent/translucent CVC SiC with equivalent optical clarity while
 - Retaining our optical surface finish capability
 - Improving our high temperature capability
 - Retaining our high thermal conductivity
 - Maintaining our cost/size scale, near net shape capability, capacity, and fast delivery advantages
- Suitable for both Missile and Hypersonic applications, as well as several other advanced technology areas
Transparent/Translucent CVC SiC (cont.)

• Allows for unique design and functional optimization of missile and hypersonic design/geometric windows and optical telescopes etc.

• Similar process technology as standard grade of CVC SiC
 • Same Industrial capacity and equipment with minor modifications

• TRL level not as mature at this point.

• Several potential chemistry and process options to evaluate and characterize performance.
Technical Solution: HoneySiC™

• **HoneySiC™**: ASCM’s innovative, additively manufactured, ceramic matrix composites
 - HoneySiC – T300 carbon fiber reinforced SiC CMC
 - H²CMN – hybrid hierarchical ceramic matrix nanocomposite with CNTs

• Program effort addresses the need for stable, strain-free, precision optical structures under the influence of dynamic and thermal stimuli, specifically whiffle plates, delta frames and backplane

• Traceable to the needs of Cosmic Origins for UVOIR, Exo and FIR telescopes

• Maturation of this technology will allow NASA and ASCM to develop a method to create large aperture optical support structures and assemblies via deployment, assembly or active control

• HoneySiC additive manufacturing process significantly minimizes cost and schedule associated with post-production fabrication steps (machining, polishing, metrology).
HoneySiC™ Features

• **Rapid Prototyping** - Extremely rapid additive manufacturing process with all assets under a single roof.

 • Large complex mirrors/structures could be produced in a matter of weeks.

 • Web thickness < 1mm, core geometries (pocket depth, pocket size) easily tailored.

 • Minimizes machining, recurring/non-recurring costs; cost is 100X < beryllium.

• **Low Areal Cost** - Cost of raw materials ~$38K/m² for unpolished HoneySiC, which already meets NASA’s goal of $100K/m² -> ~100X reduction in mirror cost based on current cost of $4-$6 million/m².

• **Low Areal Density**

 • Face sheet density ~same as beryllium

 • Sandwich constructions further reduce areal density.

 • 95% light weighting w.r.t. bulk silicon carbide.

 • Areal density of first panel made: 5.86 kg/m².

 • Estimated weight and areal density of a 255-mm mirror: 0.35 kg and 7.0 kg/m², respectively.

 • Estimated mass of 305-mm optical bench with inserts: 0.94 kg.
HoneySiC™ Features

- **Extreme dimensional stability** - CTE of HoneySiC confirmed to be near-zero with a variation of only -91 to -146 ppb/°C from -196°C to 0°C in testing at Southern Research Institute.

- **Carbon fiber or SiC reinforced SiC structure**
 - Thermal conductivity “supercharged” by addition of CNT
 - No coefficient of moisture expansion (CME)
 - Low Z for nuclear survivability
 - Electrically conductive for dissipating static charge build-up
 - ~2X higher fracture toughness than pure SiC, estimated ~4.6 MPa-m^{0.5}

- **Nuclear and Space Survivable** - Precursor carbon-carbon honeycomb is flying on >100 spacecrafts.
Phase I Progress

- ASCM would produce HCMC and H^2CMN coupons for flexural strength and CTE measurements.

- Flexure testing would be performed by Professor Nejhad at the University of Hawaii using a 4-point flexure test set up. Properties to be determined: strength, strain/deflection, stiffness and toughness.

- In-plane coefficient of thermal expansion (CTE) testing would be performed at Southern Research Institute (SoRI) at the University of Alabama using a linear variable differential transformer (LVDT). Test temperature range: -196°C to RT.
 - LVDT measures change in length as a function of temperature
 - A dial gauge would be used to provide additional expansion data and validate the LVDT measurements.
Phase I Results – Flexure Testing

- Flexure testing was performed by Professor Nejhad. Specimens are shown on the left, test fixture is shown on the right.

- Raw load-deflection curves for Pristine (HCMC) and CNT (H²CMN) samples are shown below.

- The generated stress-strain data was used to deduce strength, toughness, modulus/stiffness and strain-at-failure.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Avg. Flexure Strength (MPa)</th>
<th>Avg. Real Toughness (kJ/m²)</th>
<th>Avg. E Modulus (MPa)</th>
<th>Avg. Flexure Strain at Failure (mm/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HoneySIC™</td>
<td>63.96</td>
<td>44.55</td>
<td>53,116.96</td>
<td>0.00139</td>
</tr>
<tr>
<td>H²CMN</td>
<td>40.87</td>
<td>18.49</td>
<td>54,281.89</td>
<td>0.00090</td>
</tr>
<tr>
<td>Notes</td>
<td>CNT had ~36% less strength</td>
<td>CNT had ~59% less toughness</td>
<td>CNT had ~2% higher stiffness</td>
<td>CNT had ~35% less strain at failure</td>
</tr>
</tbody>
</table>
Phase I Results – CTE Testing

- LVDT test set up for in-plane CTE measurements shown below.

- Tabulated data is shown below for Pristine (HCMC, left) and CNT samples (H²CMN, right). Error bars represent the accuracy of the quartz dilatometer (25 ppm)
Phase I Conclusions

- **Mechanical Measurements**
 - The powder impregnation process during SMP-730 pre-pregging allowed sufficient infiltration into HCMC samples, but ineffective for H2CMN since the CNT growth requires a viscous matrix to penetrate the nanoforest.
 - It is believed the CNT matrix wet-outs were incomplete and interlaminar bonding was relatively weak, leading to reduced mechanical performance in strength, toughness and strain-at-failure.
 - H2CMN elastic modulus increased slightly due to the sandwich-type structure.
 - It is believed that the advantages of CNTs will be realized if a less viscous pre-pregging matrix (SMP-10) is used as the initial pre-pregging matrix. This will be explored in Phase II.

- **CTE Measurements**
 - Both HoneySiC materials exhibited relatively zero expansion in the in-plane direction from -196°C to RT.
 - Negative expansion was observed between -196°C and -128°C.
Phase II Effort

• Collaborate with NASA MSFC, GSFC, JPL and Northrop Grumman Aerospace Systems (NGAS) to design a prototype whiffle plate, delta frame or tube structure to be made using HoneySiC or H2CMN materials that will support space-based telescope applications.

• Supplement the suite of HCMC and H2CMN material properties measurements as requested by NASA and NGAS.

• Produce HCMC and H2CMN prototype(s) for demonstration of the technology.

• Characterize the prototype via mechanical property testing.

• Demonstrate superior performance to the incumbent material (M55J cyanate ester), which is an organic material and subject to outgassing, dimensional instability under temperature and environmental fluctuations.
Phase II Progress

• Material procurement for technology demonstration prototypes HCMC and H²CMN prototype(s)

• Planning for manufacturing of one or more of the following:

Figure 1. Latch, mounting bracket, struts, whiffle plate, delta frame

Figure 2. Composite tube structure (yellow)

Figure 3. Cassegrain telescope structure
NASA Applications

- NASA sees potential for HoneySiC™ as an affordable technology for large observatories and future astrophysics missions for:
 - The Formative Era, answering such questions as “What are exoplanets like?”
 - Characterizing planet forming disks and planetary atmospheres with the LUVOIR Surveyor.
 - Searching for life using the LUVOIR Surveyor to obtain full-disk images and spectra of pale blue dots.
 - Making longitudinal maps and detecting seasonal variations on exoEarths.
 - Searching for signs of habitability and evidence of biological activity on exoEarths.
 - The Visionary ERA, searching for life using an ExoEarth Mapper to produce resolved maps and spectra of “New Earth”, confirming surface water and identifying possible life.
Task Summary Timelines

- **H²CMN Validation (19 weeks)**
 - Prepare coupons using SMP-10 as the initial pre-pregging matrix.

- **HCMC and H²CMN Prototype Definition (10 weeks)**
 - A prototype design will be collaboratively designed by ASCM, NASA, NGAS and Professor Nejhad

- **Prototype Design and Engineering (16 weeks)**
 - FEM will be used to define design and performance requirements.
 - Design concepts will be refined and optimized for HoneySiC™; not a redesign of the original component.
 - ICDs, preliminary and final manufacturing drawings will be generated.
Summary of Tasks

• Joint Specimen Production and Testing (27 weeks)
 • Full scale specimens of the intended prototype joint will be produced to replicate the design, application and use of fasteners/hardware for mechanical testing (or other testing deemed appropriate by NGAS and NASA).
 • We anticipate there will be several candidate designs.

• Prototype Definition (28 weeks)
 • An HCMC or H²CMN prototype will be produced based on the D&E and joint specimen testing in Tasks 5 and 7.
 • Tentative plan is to make a scaled-down version of whiffle plate, delta frame or tube structure. Scaling ratio will depend on the selected component relative to UH’s furnace workspace (13”x13”x14”).
 • Estimated task time includes procurement of materials.
Summary of Tasks

• **Prototype Testing (5 weeks)**
 - Mechanical testing will be performed.

• **Phase II-E Application and Plan (12 months into POP)**
 - ASCM intends to apply for a P2-E.
 - The proposed scope of work is as follows:
 • Additional material characterization of HoneySiC™ materials. Specifically:
 • Thru-thickness CTE
 • In-plane CTE at ppb level (optional)
 • Thermal conductivity
 • Volume resistivity
 • BRDF using visible and single line laser sources
 • Development of 3D printing processes for HoneySiC™ material systems
 • Design and fabricate a meter-class telescope front structure

• **Task 11: Phase III Plan**
 • ASCM and NASA will develop a preliminary and strategic plan for Phase III and transition to commercial production.
SBIR Phase II for Contract No. NNX17CM08C

“Ultra-stable Zero-CTE HoneySiC™ and H²CMN Mirror Support Structures”

Dr. William Fischer
Principal Investigator
Office: 808-245-6465
Cell: 570-899-4191
wfischer@ascmtech.com