

NEAR-ZERO CTE 3D PRINTED ROBOSIC DEPLOYABLE TRUSS CORE STRUCTURES WITH ACTIVE PRECISION ADJUSTMENT

2018 Mirror Technology Days

NASA Phase I Results Contract #80NSSC18P2058

An ACTIVE Participant in STEM "You have to give it away to keep it"

- NASA Needs (PCOS and COR PATR)
- ► Marketplace
- Path to Precision Deployable Telescope Technical Objectives
- Performance
- ► TRUSSES
- HINGE STUDY
- Phase II TECHNOLOGY DEMONSTRATOR
- ► The Vision

- High-contrast (10⁻¹⁰) imaging and spectroscopy for exoplanet science is critically dependent on telescope optics and wavefront stability.
 - Common theme for NASA 2017 Physics of the Cosmos (PCOS) and Cosmic Origins (COS) Program Annual Technology Report (PATR). Multiple Priority Tier 1-4 technology gaps.
- Opto-mechanical system requires WFE stability on the order of 10 pm RMS per wavefront control step (~10s of minutes)
 - Spatial frequencies that correspond to the dark-hole region of the focal plane.
- ► 2nd Generation structural-grade "RoboSiC-S"
 - Degree of passive athermality required by the HaBEX, LUVOIR, eLISA, and LISA missions
 - Low areal density (4-5 kg/m²) and the ability to perform active precision adjustment.
- Common solution of interest: Silicon Carbide and 3D printing or additive manufacturing

NASA NEEDS FROM THE DECADAL SURVEY

- 2017-2027> \$100B will be spent for Small-Large Optical Systems
- Market Opportunity: Provide New Worlds Technology Development Program teams and STDTs with affordable, low areal density and ultra-stable opto-mechanical structures.
- Potential NASA applications: HabEx, LUVOIR, eLisa Program, LISA, NASA balloon-borne missions, and multiple other missions.
- Products: mirrors, instruments requiring optical benches, ultra-stable optomechanical structures (hinges, latches, trusses, tubes, pins, flexures, whiffles, struts, etc.)
- ► New Technology Called RoboSiCTM

MASSIVE COMMERCIAL MARKET

> Demonstrate Super-Dimensionally Stable Structural Grade

- Focus on lower end of Temperature Range for L2 and Deep Space Observation
- Perform Mechanical Engineering Design using SolidWorks and Finite Element Analysis software to evaluate JWST Primary Mirror Wing Hinges
- > Phase II Plan

Deliverables from Contract: Feasibility Coupons
> 120-mm 3D/AM truss structures.
TECHNICAL OBJECTIVES

	ρ	E	Ε/ρ	σ_t	σ _t /ρ	α	k	C _p	$D=k/\rho C_p$	k/α	D/α	ν
Room Temperature Property:	Density	Young's	Specific	Tensile	Specific	Thermal	Thermal	Specific	Thermal	Steady State	Transient	Poisson's
		Modulus	Stiffness	Strength	Strength	Expansion	Conductivity	Heat	Diffusivity	Stability	Stability	Ratio
Units:	kg/m ³	GPa	MPa-m ³ /kg	Мра	MPa-m ³ /kg	10 ⁻⁶ /K	W/m-K	j/kg-K	10 ⁻⁶ /m ² /s	W/µm	m²-K/s	arbitrary
Preferred Value:	Small	Large	Large	Large	Large	Small	Large	Large	Large	Large	Large	
Zerodur	2530	90.3	36	variable	variable	-0.09	1.46	800	0.72	-16.22	-8.01	0.24
M55J/954-6 T300/954-6 Axial	1742	53	30			-0.125	10			-80.00		
M55J/954-6 T300/954-6 Hoop			43		Spanne	er Tube avg 2	25-125K					
Invar 36	8050	141	43	276	0.03	1	10.4	520	2.48	10.40	2.48	
Aluminum:6061	2700	68	25	276	0.10	22.5	167	900	68.72	7.42	3.05	0.33
Single Crystal Silicon	2330	130	56	120	0.05	2.5	148	750	84.69	59.20	33.88	0.24
SiC: Sintered (alpha)	3100	410	132		0.00	4.02	125	670	60.18	31.09	14.97	0.14
SiC: Reaction Bonded	2950	364	123	300	0.10	2.44	172	670	87.02	70.49	35.66	0.18
Carbon Nanotube	2100	1060	505	100000	47.62	-12	3000	750	1904.76	-250.00	-158.73	
Graphene Nanosheet	2100	1000	476	130000	61.90	-8	3000	750	1904.76	-375.00	-238.10	
RoboSiC-Optical	3210	460	143	470	0.15	2.2	380	640	184.97	172.73	84.08	0.21
RoboSiC-S-R1	3198.9	466	146	1465.3	0.46	2.058	406.2	641.1	198.07	197.38	96.24	0.21
FACTOR OF IMPROVEMENT			4.08	<	CO	MPARED TO	Zerodu	r>	274.58	-12.17	-12.01	
			4.79	<					JWST>	-2.47		

ACTUAL PATENT PENDING RoboSiC-S EVEN BETTER!

"FLAT" CTE VS T IS HIGHLY DESIRABLE

-Beta-SiC -RoboSiC-S -Silicon

CTE (nnm/K) VS TEMPERATURE (K)

RoboSiC-S can provide the thermal stability required for Precision Deployable Structures

Goodman Technologies, LLC	Part	Description]
		Flat Truss (Warren Configuration): ~110x20x4mm	
		Flat Truss with Cantelever (Pratt Configuration): ~145x20x4mm	-
		Sloping Parallel Chord Truss (Howe Configuration): ~135x20x4mm	
		Truss Assembly Schematic (Warren Configuration): ~110x15mm tall	
TRUSSES			

JWST PMBSS type wing hinge in RoboSiC-S, ~180 cases Analyzed 1) Structural loads during launch in stowed position, and (2) thermal soak to 25 K in Deployed Position

RoboSiC Advanced Precision Ultra-Stable Deployable (RAPUD) Technology Demonstrator would buy down the risk for at least 4 PATR Priority Technology Gaps. By adding a boom (WARREN TRUSS) and RoboSiC large optic to RAPUD we could provide a Ultra-Stable Deployable Optical Telescope System (US-DOTS).

Gregory S. Agnes, Jeff Waldman, Richard Hughes and Lee D. Peterson, "Testing the Deployment Repeatability of a Precision Deployable Boom Prototype for the Proposed SWOT KaRIn Instrument", AIAA Scitech 2015, Kissimee, Florida, January 5-9, 2015.

PHASE II TECHNOLOGY DEMONSTRATOR

