

ULTRA-LIGHTWEIGHT, ULTRA-STABLE ROBOSIC ADDITIVELY MANUFACTURED LASERCOM TELESCOPE

2018 Mirror Technology Days

NASA Phase I Results Contract #80NSSC18P1995

An ACTIVE Participant in STEM "You have to give it away to keep it

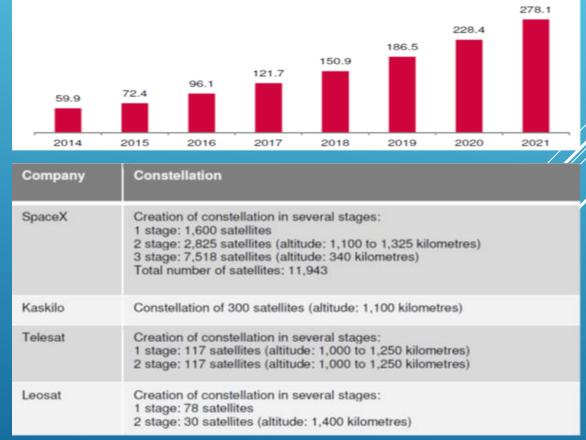
- NASA Needs (PCOS and COR PATR)
- ► Marketplace
- Path to Lasercom Telescope Technical Objectives
- Performance
- ► Bolts
- ► OAP
- Phase II Plan

- Dimensional stability, low scatter, extreme light-weighting, and precision structures
 - Common theme for NASA 2017 Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Annual Technology Report (PATR). Multiple Priority Tier 1-4 technology gaps
- NASA's Long Range Optical Communications Goals for FSOC
 - >100 gigabit/s cislunar (Earth or lunar orbit to ground)
 - ► >10 gigabit/s Earth-sun L1 and L2,
 - >1 gigabit/s per AU-squared deep space
 - >100 megabit/s planetary lander to orbiter.
- ► Laser communications telescopes (LCTs):
 - ▶ 30-100 cm CA, WFE <62 nm, cumulative WFE and transmission loss < 3-dB (far field)
 - Advanced thermal/stray light design for operation while sun-pointing (3-degrees)
 - -20° C to 50° C operational range (wider range preferred)
 - ► Areal density <65kg/m².
- Common solution of interest: Silicon Carbide and 3D printing or additive manufacturing

NASA NEEDS FROM THE DECADAL SURVEY

 December 31, 2017 "Internet World Stats" estimates that there are 4.2 billion global internet users

- CISCO: 24% CAGR for data transfer between 2016 and 2021
 - ▶ 278.1 exabytes by 2021


 Companies planning high-volume space satellite networks include Telesat, SpaceX, Kaskilo and Leosat

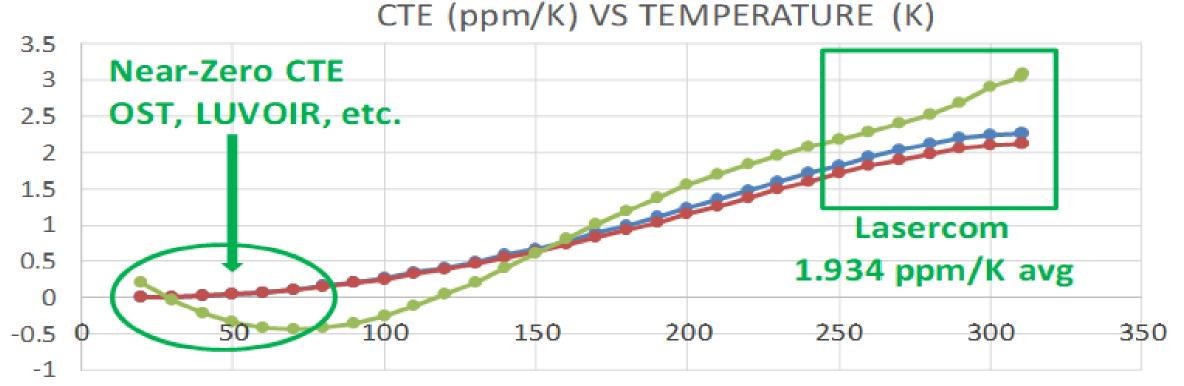
MASSIVE COMMERCIAL MARKET

WORLD INTERNET USAGE AND POPULATION STATISTICS DEC 31, 2017 - Update

World Regions	Population (2018 Est.)	Population % of World	Internet Users 31 Dec 2017	Penetration Rate (% Pop.)	Growth 2000-2018	Internet Users %	
Africa	1,287,914,329	16.9 %	453,329,534	35.2 %	9,941 %	10.9 %	
Asia	4,207,588,157	55.1 %	2,023,630,194	48.1 %	1,670 %	48.7 %	
Europe	827,650,849	10.8 %	704,833,752	85.2 %	570 %	17.0 %	
Latin America / Caribbean	652,047,996	8.5 %	437,001,277	67.0 %	2,318 %	10.5 %	
Middle East	254,438,981	3.3 %	164,037,259	64.5 %	4,893 %	3.9 %	
North America	363,844,662	4.8 %	345,660,847	95.0 %	219 %	8.3 %	
Oceania / Australia	41,273,454	0.6 %	28,439,277	68.9 %	273 %	0.7 %	

Global Internet data transfer (exabytes/month; 1 exabyte = 1 billion gigabytes)

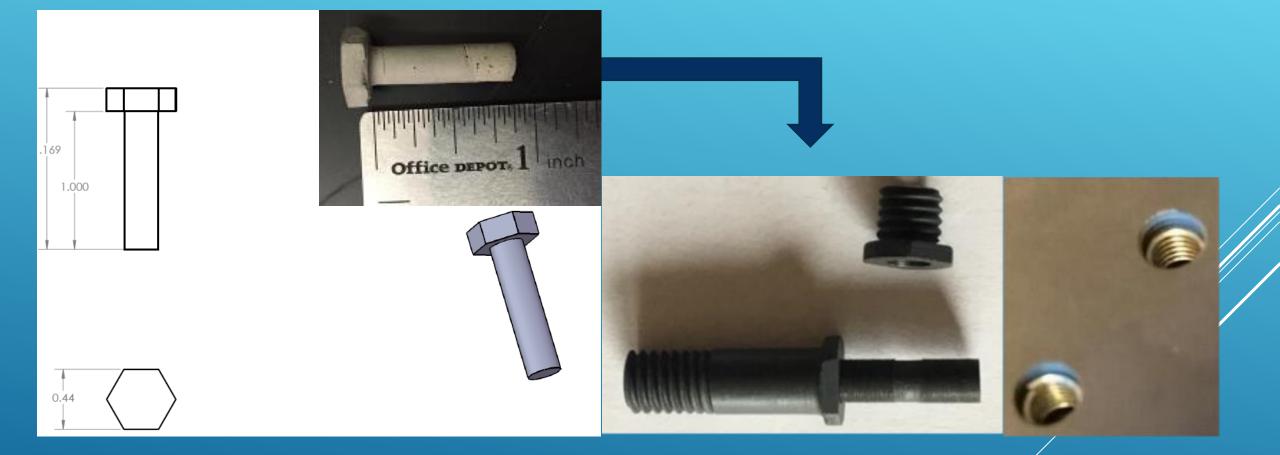
- > Demonstrate new RoboSiC Optical and Structural Materials
 - > Minimize surface roughness and scatter for mirrors (super-polishable)
- > Print general asphers (We are printing an Off-Axis Parabola)
- > Demonstrate Super-Dimensionally Stable Structural Grade
 - W.R.T. BASELINE RoboSiC (100% SiC) Structural Grade is Lower Density, Higher Stiffness, Higher Strength, Lower Coefficient of Thermal Expansion and other Multi-Functionality
 - > Phase II Plan
- ➤ Deliverables: New Technology Called RoboSiC[™]
 - $> \frac{1}{4} \times 80$ and $\frac{1}{4} \times 20$ threaded RoboSiC bolts
 - > 10-30 mm diameter printed RoboSiC OAP substrate & DD Form 250


TECHNICAL OBJECTIVES

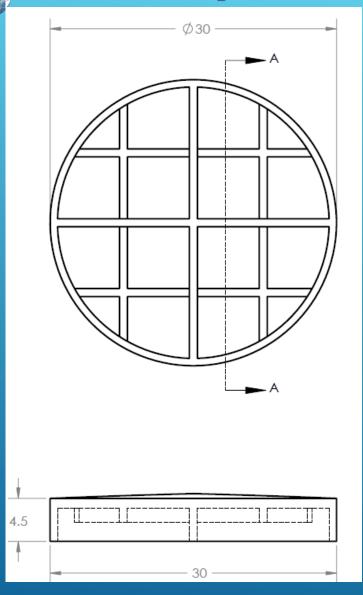
	ρ	E	Ε/ρ	σ_{t}	σ _t /ρ	α	k	Cp	D=k/pCp	k/α	D/a	ν
Room Temperature Property:	Density	Young's	Specific	Tensile	Specific	Thermal	Thermal	Specific	Thermal	Steady State	Transient	Poisson's
		Modulus	Stiffness	Strength	Strength	Expansion	Conductivity	Heat	Diffusivity	Stability	Stability	Ratio
Units:	kg/m ³	GPa	MPa-m ³ /kg	Мра	MPa-m ³ /kg	10 ⁻⁶ /K	W/m-K	j/kg-K	10 ⁻⁶ /m ² /s	W/µm	m²-K/s	arbitrary
Preferred Value:	Small	Large	Large	Large	Large	Small	Large	Large	Large	Large	Large	
Zerodur	2530	90.3	36	variable	variable	-0.09	1.46	800	0.72	-16.22	-8.01	0.24
M55J/954-6 T300/954-6 Axial	1742	53	30			-0.125	10			-80.00		
M55J/954-6 T300/954-6 Hoop			43		Spanne	er Tube avg 2	25-125K					
Invar 36	8050	141	43	276	0.03	1	10.4	520	2.48	10.40	2.48	
Aluminum:6061	2700	68	25	276	0.10	22.5	167	900	68.72	7.42	3.05	0.33
Single Crystal Silicon	2330	130	56	120	0.05	2.5	148	750	84.69	59.20	33.88	0.24
SiC: Sintered (alpha)	3100	410	132		0.00	4.02	125	670	60.18	31.09	14.97	0.14
SiC: Reaction Bonded	2950	364	123	300	0.10	2.44	172	670	87.02	70.49	35.66	0.18
Carbon Nanotube	2100	1060	505	100000	47.62	-12	3000	750	1904.76	-250.00	-158.73	
Graphene Nanosheet	2100	1000	476	130000	61.90	-8	3000	750	1904.76	-375.00	-238.10	
RoboSiC-Optical	3210	460	143	470	0.15	2.2	380	640	184.97	172.73	84.08	0.21
RoboSiC-S-R1	3198.9	466	146	1465.3	0.46	2.058	406.2	641.1	198.07	197.38	96.24	0.21
FACTOR OF IMPROVEMENT			4.08	<	CO	MPARED TO	Zerodu	ır>	274.58	-12.17	-12.01	
			4.79	<					JWST>	-2.47		

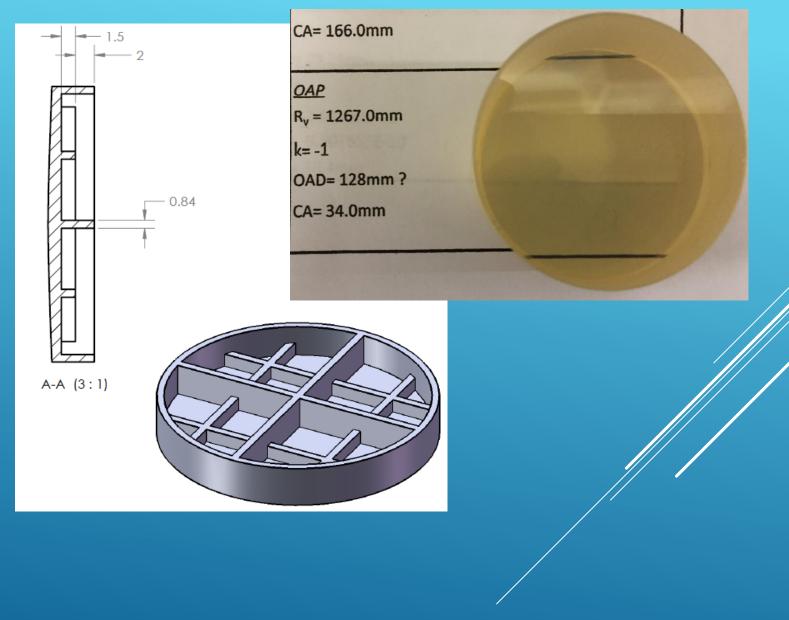
PATENT PENDING RESULTS ARE ASTONISHING

"FLAT" CTE VS T IS HIGHLY DESIRABLE

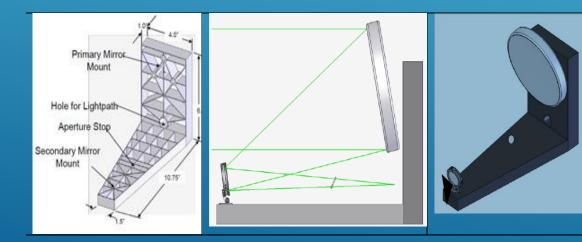


-Beta-SiC -RoboSiC-S -Silicon


RoboSiC-S can provide the thermal stability required for Lasercom and other mission requirements



"BOLT-TOGETHER DESIGN" FOR LOW COST ASSEMBLY/ALIGNMENT



OFF-AXIS PARABOLIC DEMONSTRATOR

- NASA Gregorian Telescope internal field stop for straylight control
- GT Senior Systems Engineering team: design/build lightweight & dimensionally stable telescope meets/exceeds all NASA requirements
 - PM: Dr. Andy Motes GT Chief Technologists wrote a book on Lasercom
 - ▶ 3D, AM and bolt-together approach for rapid, low cost assembly

