The LUVOIR Decadal Mission Concept: Technology Needs

Garrett West
on behalf of the
LUVOIR Study Team
NASA / GSFC

Mirror Tech Days
El Segundo, CA
5 November 2018
What is LUVOIR?

Large UV / Optical / Infrared Surveyor
A space telescope concept in tradition of Hubble:
• Broad science capabilities serving exoplanet, general astrophysics, and solar system science communities
• Far-UV to near-IR bandpass
• Suite of imagers and spectrographs
• Serviceable and upgradeable
• Guest-observer driven

“Space Observatory for the 21st Century”
Ability to answer the questions of the 2030s and beyond
Science Topics

Habitable Worlds

Comparative Planetology

The Solar System

Cosmology & Structure

Galaxies & Galaxy Evolution

Stars & Stellar Formation
Science Flowdown

- LUVOIR’s compelling science objectives define a set of high-level mission capabilities:
 - Sensitivity
 - Resolution
 - Flexibility
 - Mission Duration
 - High-contrast Imaging
Science Flowdown

• LUVOIR’s compelling science objectives define a set of high-level mission capabilities:

 • Sensitivity
 • Resolution
 • Flexibility
 • Mission Duration
 • High-contrast Imaging

Aperture, Aperture, Aperture

8 m
15 m
LUVOIR’s compelling science objectives define a set of high-level mission capabilities:

- Sensitivity
- Resolution
- Flexibility
- Mission Duration
- High-contrast Imaging

Broad Wavelength Coverage
Suite of Instruments
Large Field-of-Regard
Science Flowdown

- LUVOIR’s compelling science objectives define a set of high-level mission capabilities:
 - Sensitivity
 - Resolution
 - Flexibility
 - Mission Duration
 - High-contrast Imaging

Serviceability
Science Flowdown

• LUVOIR’s compelling science objectives define a set of high-level mission capabilities:
 • Sensitivity
 • Resolution
 • Flexibility
 • Mission Duration

 • High-contrast Imaging
 Stability, Stability, Stability
The LUVOIR Architectures
A Tale of Two LUVOIRs

• LUVOIR-A
 • 15-m diameter segmented, obscured aperture
 • Four instruments:
 • Extreme Coronagraph for Living Planetary Systems (ECLIPS-A)
 • LUVOIR UV Multi-Object Spectrograph (LUMOS-A)
 • High Definition Imager (HDI-A)
 • Pollux – High-res. UV Spectropolarimeter (CNES Contributed)
 • Designed to use SLS Block 2 launch vehicle with an 8.4 x 27.4-m fairing

• LUVOIR-B
 • 8-m diameter segmented, unobscured aperture
 • Three instrument bays:
 • ECLIPS-B
 • LUMOS-B
 • HDI-B
 • Designed for a “conventional” 5 x 19.8-m fairing and heavy-lift rocket
LUVOIR-A

Credit: Drew Jones, NASA/GSFC
Technology
LUVOIR Technology Needs

- **Ultra-stable optical systems**
 - Require wavefront *stability* on the order of 10 pm RMS

- **High-contrast segmented aperture coronagraphy**
 - Require 10^{-10} raw contrast between $\sim 3 - 60 \lambda/D$
 - Maintain high throughput, and robust to jitter and stellar diameter

- **Detectors**
 - Photon-counting detectors for exoplanet science
 - Large-format, high-resolution, low-noise detectors for wide-field imaging
 - Microchannel plates for far-UV spectroscopy

- **UV Instrumentation**
 - Large freeform optics, with and without UV gratings
 - Microshutter arrays
 - High-uniformity broadband coatings with high far-UV reflectivity
LUVOIR Technology Needs

• Ultra-stable optical systems
 • Require wavefront stability on the order of 10 pm RMS

• High-contrast segmented aperture coronagraphy
 • Require 10^{-10} raw contrast between $\sim 3 - 60 \lambda / D$
 • Maintain high throughput, and robust to jitter and stellar diameter

• Detectors
 • Photon-counting detectors for exoplanet science
 • Large-format, high-resolution, low-noise detectors for wide-field imaging
 • Microchannel plates for far-UV spectroscopy

• UV Instrumentation
 • Large freeform optics, with and without UV gratings
 • Microshutter arrays
 • High-uniformity broadband coatings with high far-UV reflectivity

Need to be developed as a system!
High-Contrast Segmented System

Ultra-stable Segmented Telescope System
- Mirror Assemblies
 - Coating
 - Substrate
 - Thermal Control
 - Actuators
- Support Structures
 - Materials
 - Interfaces
 - Thermal Control
- Metrology Sub-system
 - Laser Truss
 - Edge Sensors
 - Phase Retrieval
 - Artificial Guide Star
- Isolation Sub-system
 - Passive
 - Active
 - Microthrusters
 - No-disturbance Mechanisms

High-Contrast Coronagraph System
- Coronagraph Architecture
 - APLC
 - VVC
 - VNC
 - PIAA
- Wavefront Sensing & Control Sub-system
 - Deformable Mirrors
 - Low-order Sensing
 - Out-of-band Sensing
 - Focal-plane Sensing
 - Control Processor
 - Post-processing

5 November 2018
LUVOIR, Mirror Tech Days

High-Contrast Segmented System

Ultra-stable Segmented Telescope System
- Mirror Assemblies
 - Coating
 - Substrate
 - Thermal Control
 - Actuators
- Support Structures
 - Materials
 - Interfaces
 - Thermal Control
- Metrology Sub-system
 - Laser Truss
 - Edge Sensors
 - Phase Retrieval
 - Artificial Guide Star
- Isolation Sub-system
 - Passive
 - Active
 - Microthrusters
 - No-disturbance Mechanisms

High-Contrast Coronagraph System
- Coronagraph Architecture
 - APLC
 - VVC
 - VNC
 - PIAA
- Wavefront Sensing & Control Sub-system
 - Deformable Mirrors
 - Low-order Sensing
 - Out-of-band Sensing
 - Focal-plane Sensing
 - Control Processor
 - Post-processing

Technology Development
Engineering Development

5 November 2018
LUVOIR, Mirror Tech Days
Detector Needs

• For exoplanets…
 • Radiation hard, large format ($\geq 4k \times 4k$) photon-counting detectors
 • Preferably ones that do no require cryogenic operation
 • Three bands of interest: 200 – 550 nm; 500 – 1.03 μm; 1.0 – 2.0 μm

• For wide-field imaging…
 • Large format ($\geq 8k \times 8k$), buttable arrays with high-speed region-of-interest readout

• For far-UV…
 • Large-format, high-dynamic range microchannel plates

• In general…
 • Lower noise, higher sensitivity
UV Instrumentation Needs

• Freeform optics…
 • Require large (~0.5-1.0 meter class) freeform UV-quality optics with and without UV gratings (R~50,000)

• Micro-shutter arrays…
 • Next-gen arrays with electrostatic actuation
 • Larger format, tileable

• Coatings…
 • 100 nm – 2.5 μm bandpass
 • High uniformity, and high repeatability (need 120 identical segments)
Summary

• LUVOIR is large space observatory with capabilities that appeal to a broad range of the scientific community

• Two architectures are being studied to define a trade space that is robust to future uncertainty

• A detailed technology development plan will ensure adequate technical maturity of either concept prior to a mid-2020s mission start
Look Ahead…

• Preparing Concept Maturity Level 4 (CML 4) deliverables to NASA HQ in Fall ’18
 • CML 4 deliverables due Feb. 2019

• Next spring, both architectures undergo independent cost validation by a HQ-appointed committee

• Final reports due to NASA HQ in July 2019 and to NAS in August 2019
Thank you!

For more information:
http://asd.gsfc.nasa.gov/luvoir