HobEx //

Technology Maturity for the HabEx Observatory Concept

Dr. Rhonda Morgan and the HabEx Design Team Jet Propulsion Laboratory, California Institute of Technology

Copyright 2018. All rights reserved.

Pre-decisional information -- for planning and discussion purposes only.

HodbEx

Technology Maturity

2

	Number of Gaps			
	TRL 3	TRL 4	TRL 5	
Expected 2019	1	7	6	
Expected 2023	0	3	11	

Inner working angle (*IWA*)

• :

124,000 km separation

Telescope aperture diameter 4 m

Starshade diameter 72 m

HobEx //

Starshade Deployment

HobEx M

Truss Deployment Test

Starshade Deployment Technology Demo

August 2013

HobEx // Petal deployment accuracy

NASA

- Starshade tolerances scale linearly
- SOA
 - 12 m flight-like truss
 - Petal deployment tolerance <0.15 mm
- Requirement for 20 m truss
 - +- 0.5 mm (3σ) bias
 - +- 1.5 mm (3σ) stability
 - In operational environment
 - Path
 - S5 5m truss half-scale demo planned for 10 m truss
 - HabEx 52m starshade requires 10m half-scale demo truss

Hobex //

Petal shape and stability.

• SOA


6m prototype petal manufactured to <100 um tolerance

• Requirement for 16m long, 2.6 m wide petal

- Shape manufacture to +-115 um (3σ)
- Deployed shape to < +- 230 um (3σ)
- Stability (thermal)
 - Disk to petal strain < 30 ppm
 - 1-5 cycle petal width <20 ppm

Path

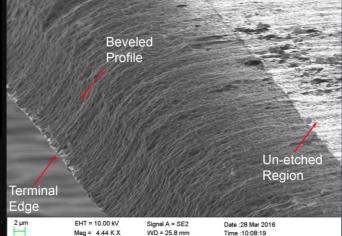
• S5 4 m long, 1.5 m demo petal for S5 applies to HabEx (stability driven by width)

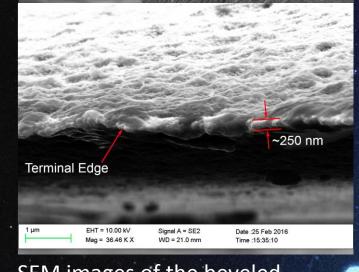
HobEx

Solar Edge Scatter

• SOA

 Metal edges (coupons)meet all specs but in-plane shape tolerance


Requirement


- Petal-edge in-plane shape tolerance 40 um
- Solar glint at 25 Vmag in two main lobes

Path

- S5 to demonstrate performance at edge segment level
- Sufficient demonstration for HabEx

SEM images of the beveled edge and terminal edge

HobEx

Formation Sensing

• SOA

- Out-of-band sensing of pupil plane images show structure in the low-contrast starshade shadow
- Simulations show ample star flux for control loop and < 0.15 cm lateral displacement (0.01 pixel star positions)
- Requirements
 - Demonstrate sensing lateral errors to 0.20 m accuracy, =< 1 mas bearing angle
 - Demonstrate control algorithms to scaled lateral errors =< 1m

Path

 S5 testbed demonstration is sufficient for HabEx TRL5 certification expected Feb 2019

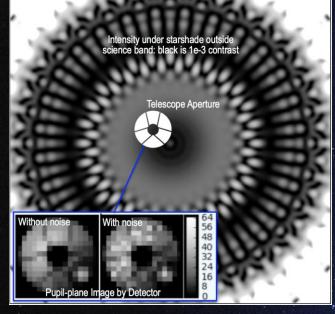
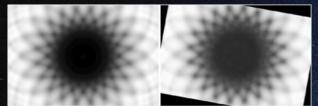



Illustration of lateral sensing using pupil-plane image matching

Preliminary results Simulation Testbed

HobEx /

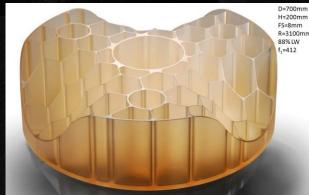
Optical Performance and Model Validation

• SOA

- 6E-6 suppression in pupil plane at Fresnel No. 15, broadband
- 6.6e-9 suppression in pupil plane, 4.3e-11 average contrast in focal plane at Fresnel No. 13, monochromatic

Requirements

- Experimentally validated models
 - with suppression <1E-8, F1.0 between 5 and 40 (broadband)
 - Traceable to 1E-10 contrast system performance
- Path
 - S5 testbed at Princeton expected TRL 5 2019 is sufficient for HabEx

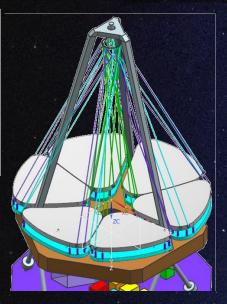


S5's starshade model validation testbed at Princeton.

HobEx // Large Mirror Fabrication

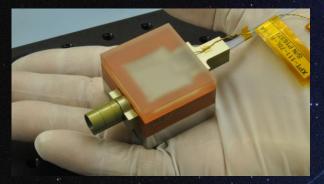
- SLS allows for moderate lightweighting
- Microthrusters allow for low first frequency
- SOA
 - 4.2m DKIST primary mirror by Schott, UA (2nm surface) roughness)
 - 4m ELT M2 by Schott
 - Zerodur CTE homogeneity 10 ppb/K
 - Lightweight cell 340 mm deep, 2mm wall
- Requirements
 - Wavefront thermal stability ~1 nm over 100s of seconds
 - First mode > 60 Hz
- Path
 - 4m demonstrator for TRL 5

SCHOTT 700 mm diameter and 200 mm high Zerodur[®] with 2 mm machined walls, and contouring of the back.


4.2 m Daniel K. Inouye Solar Telescope primary mirror

HobEx 3.2m Starshade Only option

- Starshade only option requires looser WFE
- SOA
 - ULE demonstrator mirror
 - low mass: 10 kg/m2
 - 15 nm RMS WFE stand-alone, with backouts
 - 8 nm WFE RMS post-actuation predicted
- Requirements
 - 34 kg/m2 CBE for Falcon H or Delta IV H
 - 18 nm RMS WFE primary mirror, 10 nm RMS stability
- Enhancing developments:
 - Reduce ROC-matching errors
 - Improve 0-g figure prediction
 - 6DOF RB actuation from 1 nm to 10 cm without launch locks


HobEx /

Laser Metrology

• SOA

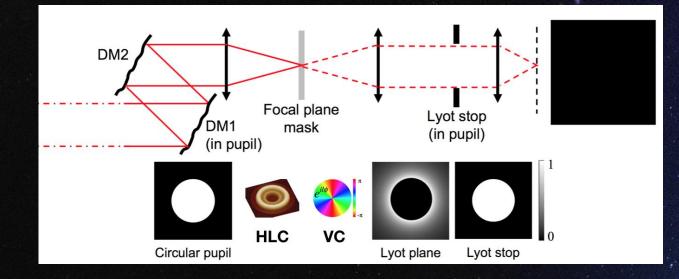
- Laser: Nd:YAG ring laser and modulator on LISA Pathfinder, Grace Follow-On
- Thermally stabilized Planar Lightwave Circuit fully tested
- Requirements
 - Sense at 1 kHz BW
 - Uncorrelated per gauge error of 0.1nm
- Path
 - At TRL 5 for HabEx

PLC beam launcher

HobEx Coronagraph Architecture

• Requires 10^{-10} raw contrast from 2.4 to 32 λ /D for 20% bandwidth

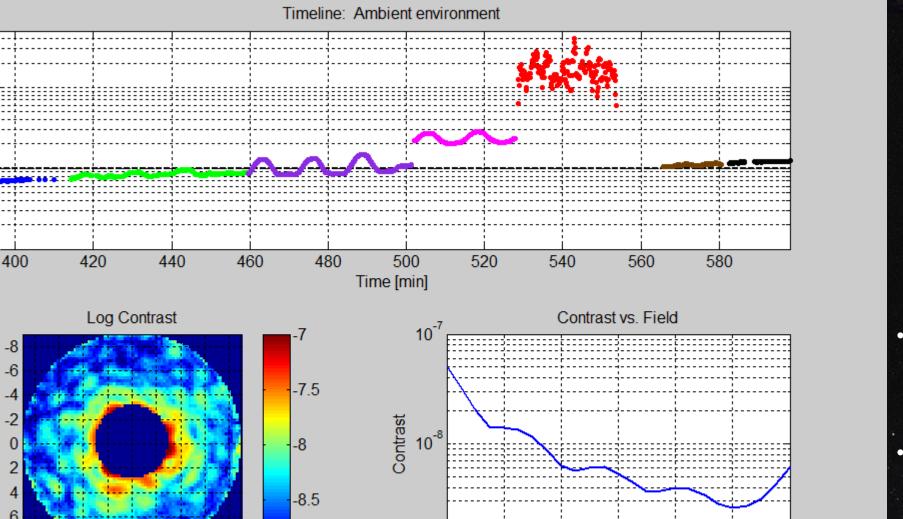
• SOA


- VVC 5E-10 monochromatic,
 - 3-8 I/D, 2-7 λ/D
 - 1E-8 10% BW
- HLC linear mask
 - 6E-10, 10% BW, 3-16 λ/D

Requirement

- 1E-10 raw contrast, 20% BW,
- 1E-11 contrast stability
- IWA = 2.4 λ /D
- Coronagraph throughput >= 10%
- Dual polarization operation

Path


 ExEP Decadal Studies Testbed seeks to show 1E-10 raw contrast with VVC in static environment by 2019

The ExEP Decadal Studies Testbed (DST) strives to achieve 10⁻¹⁰ raw contrast for an unobscured aperture.

LOWFS/C

10⁻⁹

5

Field Angle [lambda/D @ 550nm]

-9

6 8

4

10

10

10

-8

-6

-2

0

6

8

-8 -6

-4 -2 0 2

X $[\lambda/D \text{ at 550nm}]$

at 550nm]

A Pup

Mean Contrast

- Low Order Wavefront Sensing and Control (LOWFS/C) WFIRST testbed
 - Injected
 - 14 mas tip/tilt drift + CBE jitter 600 rpm
 - wheel speed
 - +/- 0.5 nm focus sinusoid
 - Senses:
 - LoS tip/tilt to 0.2 mas
 - low order mode to 12 pm rms
- The HabEx jitter environment is much more benign due to microthrusters.
- Path

9

 Demonstrate LOWFS/C in full coronagraph testbed with WFIRST CGI like progression

HobEx

Microthrusters

• SOA

- Colloidal (CMT): 5-30 uN thrust, 0.1 uN resolution
 - 100 days on ESA/NASA LISA Pathfinder
- Cold Gas: 1mN max thrust, 0.1 uN resolution
 - 4 years on orbit operations on ESA Gaia
- May be on Euclid
- Requirement
 - Thrust capability of 0.35 mN
 - Operating life of 5 years

• Path:

- PCOS maturing TRL7 CMT to TRL6 for ESA-led LISA mission
- Trade Colloidal with cold gas microthrusters
- Trade: active isolation + RCS with monoprop + microthrusters

A single cluster of four Busek Co. CMTs integrated on the LISA Pathfinder Spacecraft just prior to launch.

HobEx MDMs and visible detectors

- Boston Micromachines Corp (BMC) Deformable Mirrors (DMs)
 - 0.4 mm pitch
 - Micro Electrical Mechanical System (MEMS)
 - 64 x 64 actuators (4096 actuators)
- Under test in the DST
- Environmental testing in progress (TDEM)
- Phase 2 SBIR to improve residual WFE

- Visible detectors are EM-CCDs
 - CCD201: 1024 pixels for cameras
 - CCD282: 2048 pixels for coro. IFS
 - CCD282: 4096 pixels for Starshade IFS
- WFIRST-CGI lab results for dark current meet HabEx requirements
- WFIRST-CGI EMCCD requirements meet HabEx needs

BMC 64x64 DM

Hodbex M

Enhancing Technologies

- UV Microchannel Plate Detector
- SOA (TRL 4)
 - dark current ≤0.1-1 counts/cm2/s with ALD borosilicate plates
 - QE 44% 115-180 nm with alkalai photocathode
- Requirement
 - Dark current <0.001 e-/pix/s [173.6 counts/cm/s]
- Path
 - Components integrated into single MCP
 - Adopt if mature in time

- Far-UV Enhanced coatings for 100 nm cutoff
- SOA (TRL 3)
 - Al+LiF+AlF3 proof of concept show 3 year stability
- Requirement
 - Operational life >10 years
- Path
 - Adopt if mature in time

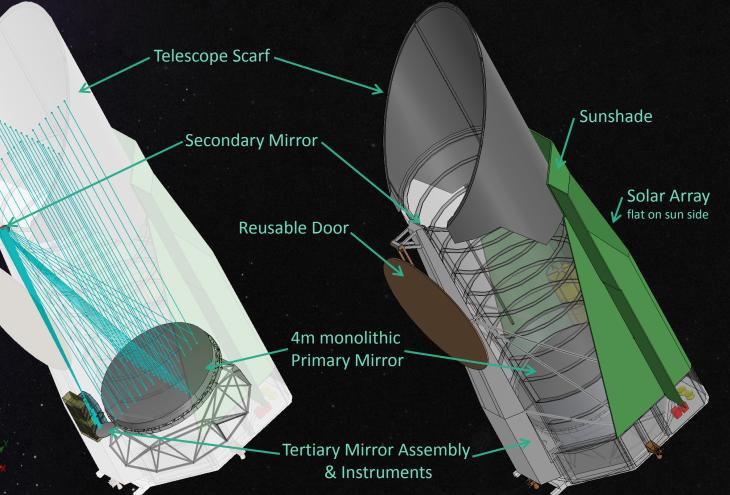
HobEx

Maturation Timeline

	FY18	FY19	FY20	FY21	FY22	FY23	FY24	FY25	FY26	FY27
Technology	2017 2018	2019		2021	2022		2024	2025	2026	2027
						2023				
	51911212343078	91011212343678	910112123430789	10112123430789	1011212343078	510112123450789	101112123430789	10112123430789	10112123450789	101121234307891
HabEx TRL 5			7	🗸 Starshade Edge Sc	attor	🗸 Petal Shape		~	Petal Deployment	Largo Mirror Ech
Milestones				V Starshaue Euge Sc	atter	V Coronagraph Instru	ument	N N	retai Deployillent	
S5 TRL 5 Milestones		St	arshade Edge Scatter 🗸	Petal Deployment	7	🔽 Petal Shape				
			-	•		•				
						_				
Petal Shape		Petal Shape				TRL5				
Petal Deployment		S5								
					7					
					HabEx				TRL5	
Starshade Edge	Starshade Edg	ne Scatter		TRL5						
Scatter	Otarshade Edg	ge ocatter								
Large Mirror Fab					Mirror Fab & 1	Test			TRL5	
					Coating Cham	ber Fab & Coupon	Tests			
									7	
									Mirror Coating	TRL5
Coronagraph	LOWFS (WFIRST))		1						
Instrument Testbed		_								
		VV6 Design								
			HCIT Modification							
			Horr moundation							
				1E-10 Contrast, 20	0% BW Dynamic	TRL5				
				TE-TO Contrast, 2	o /o Bw, Byna mic					
DM	Environment Testin									
DIVI	Environment lestin	19								
			—							
		Performance in DS	T TRL5							
S5 TRI 5 Milestones	HabEx TRI 5 Miles	topos								

18

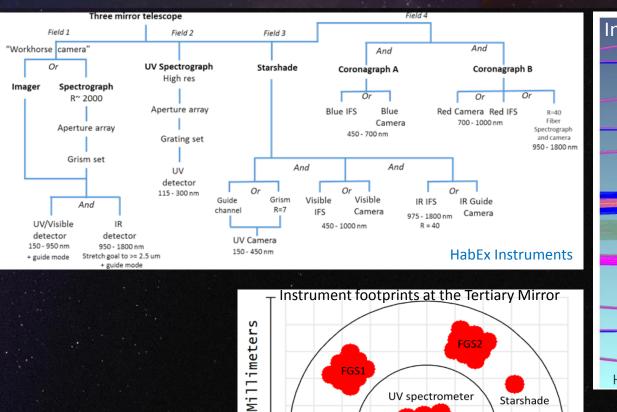
HobEx



BACKUP

HobEx

Baseline Architecture


Habitabl	le Exoplanet Imaging Mission
Mission Duration:	5 years
Orbit:	Earth-Sun L2 Halo orbit
Aperture:	4-meter unobscured
Telescope Architecture:	off-axis, Three Mirror Anastigmat (TMA)
Primary Mirror:	f-number: f/2.5 construction: monolith reflective coating: AI+MgF2
Wavelengths:	115nm – 2500nm (UV, Vis, NIR)
Instruments:	- Coronagraph - Starshade Camera + Starshade Occulter - High-Resolution UV Spectrograph - Multi-purpose, Wide-field Camera & Spectrograph
Starshade	72-meter diameter starshade occulter
Attitude Control System (ACS):	 Fine-Guiding Sensor Instrument biprop thrusters (slewing) microthrusters (pointing)
Formation Flying Control System:	- position sensor - local communications
Communications:	phased-array antenna
Serviceability:	 - instruments (4) - thrusters - avionics - communications - refueling: telescope + starshade

WED 5:30 pm, 246.38. HabEx Optical Telescope Concepts: Design and Performance Analysis <u>*H. P. Stahl*</u>

The 4m monolithic primary TRL of 4 is enabled by microthrusters and the SLS lift capacity

Baseline Instruments

Coronagraph

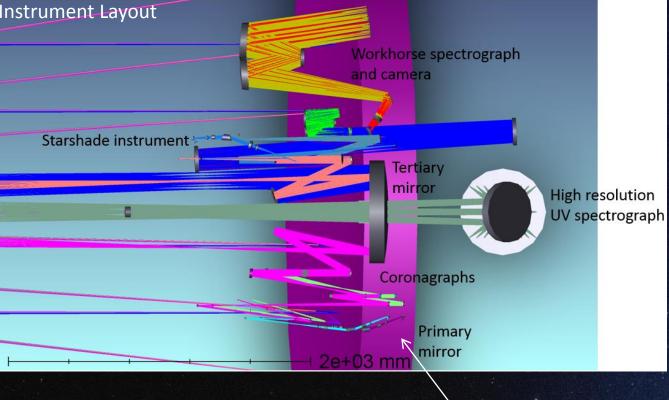
FGS4

.0000

740.

••• Ð Scal

UV spectrometer

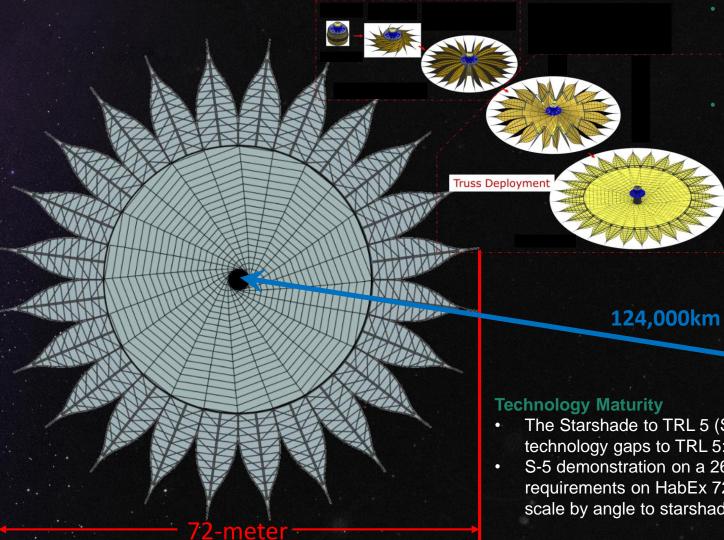

Scale: 740.0000 Millimeters

FGS3

Starshade

Workhorse camera

Hodbex


Primary Mirror

21

Hodbex

Propulsion (Occulter)

- Solar Electric Propulsion (SEP) with Hermes Hall effect thrusters for slewing (repositioning)
- Biprop thrusters for attitude control
- >100 targets / 5yrs

Observing

- ≤10⁻¹⁰ Suppression
- 40 83 degree sun-angles
- 450 1000nm wavelengths at nominal separation
 - IWA = 62 mas
 - IFS, R = 140
- 150– 300nm wavelengths at farther distance
 - IWA = 28 mas
 - Grism, R = 7
- 1000 1800nm at closer distance
 - IWA = 111 mas
 - Slit spectrograph, R = 140
 - OWA = 1.9 arcsec
- The Starshade to TRL 5 (S-5) project is maturing 5 starshade technology gaps to TRL 5: 3 by the end of 2019 and 2 by 2021
- S-5 demonstration on a 26 m starshade achieves HabEx requirements on HabEx 72 m starshade because requirements scale by angle to starshade.

HobEx Workhorse camera, UVS

Workho	rse Camera Instrument				
	Multi-purpose, wide-field imaging camera and spectrograph				
Waveband:		UV Spectrograph Instrument			
UV:Vis:	• 150nm – 400nm • 400nm – 950nm	Purpose:	High resolution, UV spectroscopy for general astrophysics		
• NIR:	• 950nm - 1800nm (2500nm goal)	Waveband: • Spectroscopy:	115nm – 360nm (20 bands)		
Telescope Diffraction Limit:	400nm	Telescope Diffraction Limit:	400nm		
Field-of-view:	3 arcmin x 3 arcmin	Field-of-view:	3 arcmin x 3 arcmin R = 500 – 60,000 (band dependent)		
Spectral Resolution:	R = 2000	Spectral Resolution:			
Detector:			6x6 MCP array, 100mm sq each		
• UV/Vis:	• 3x3 CCD203	Detector	• 60000x60000 pixels		
	12288x12288 pixels		Micro-shutter array		
• NIR:	• 2x2 H4RG10	Multi-Object Spectroscopy (MOS) capable	2x2 array 200x100 um 171x365 apertures		
	8192x8192 pixels				
Multi-Object Spectroscopy (MOS) capable	Micro-shutter array,				
	2x2 array 200x100 um 171x365 apert	ures			

- UV requirements are met by the state of the art.
- UV Performance can be enhanced by advancements in UV coatings and detectors