

Near Earth Asteroid Scout Mission Update

Les Johnson, Joe Matus, Matt Pruitt NASA George C. Marshall Space Flight Center

Julie Castillo-Rogez, Anne Marinan, Calina Seybold, Jack Lightholder, Gregory Lantoine, Ted Sweetser NASA Jet Propulsion Laboratory, California Institute of Technology

Near Earth Asteroid Scout Mission Overview

The Near Earth Asteroid Scout Will

- Image/characterize a NEA during a slow flyby (~m/s)
- Demonstrate deployment and navigation using a solar sail

Key Spacecraft & Mission Parameters

- 6U CubeSat
- ~86 m² solar sail propulsion system
- Manifested for launch on the Space Launch System Artemis 1, in 2021
- 1 AU maximum distance from Earth

Leverages: combined experiences of MSFC and JPL with support from GSFC, JSC, & LaRC

Target Reconnaissance with medium field imaging Shape, spin, and local environment

Close Proximity Imaging Local scale morphology, terrain properties, landing site survey

NEA Scout Approximate Scale

Deployed Solar Sail

34th Annual Small Satellite Conference 2020

Near Earth Asteroid Scout Science Overview

1. Target Detection and Approach: 50K km, Light source observation SKGs: Ephemeris determination and composition assessment 2. NEA Reconnaissance <100 km distance at encounter 50 cm/px resolution over 80% surface SKGs: volume, global shape, spin properties, local environment 3. Close Proximity Science High-resolution imaging,
 10 cm/px over >30% surface
 Strategic Knowledge Gaps
 (SKGs): Local morphology Regolith properties

JPL

Baseline Target Asteroid

- Target changes with launch date and trajectory baseline from SLS
- Current target is 2019 GF1
- Available for launch dates from August 2021 thru February 2022

NASA

Concept of Operations Overview

34th Annual Small Satellite Conference 2020

Flight System Overview

NEAS	cout

Payload	 Updated OCO3 Context Camera 	
Mechanical & Structure	 "6U" CubeSat form factor <14 kg total launch mass Modular flight system concept 	
Avionics	 Radiation tolerant architecture 	
Electrical Power System	 Deployable solar arrays with GaAs cells (~51.2 W EOL at 1 AU solar distance) 6.2 Ah Battery 10 -12.3 V unregulated, 5 V regulated 	
Telecom	 JPL Iris 2.1 X-Band Transponder; 4 W RF output power, supports doppler, ranging, and D-DOR 2 pairs of INSPIRE-heritage LGAs (RX/TX) 8x8 element microstrip array MGA (TX); ~1 kbps to 34m DSN at 0.8 AU 	
Attitude Control System	 15 mNm-s (x4) Active mass translation system VACCO R-236fa (refrigerant gas) Reaction Control System Nano StarTracker, Coarse Sun Sensors & MEMS IMU for attitude determination 	
Propulsion	 ~86 m² aluminized CP-1 solar sail (based on NanoSail-D2) 	

Assembly, Integration, and Test (AI&T) Overview

Solar Sail Construction and Deployment

Credit: Planetary Society, Jason Davis

NASA

Avionics Box Delivery – August 2019

Full Spacecraft Integration

NEAS Status Summary

NEA

- Spacecraft integration ~95% complete, delayed by pandemic
 - Awaiting final installation of solar panels
- System level testing planned to begin once integration is complete
 - Functional
 - EMI/EMC
 - Vibration
 - Thermal Vacuum
 - Day in the Life
- Delivery to SLS/ Tyvak for flight

